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Abstract

Since Windows 64b, PatchGuard has been of great interest in Windows security.

For most iterations of its development, several people have analyzed its main mechanisms and
internals which, many times, led to a functional bypass. Researchers seem to agree on one thing:
bypassing PatchGuard will always be theoretically possible since it runs at the same level as a
driver. Which seems true, theoretically.

That said, just like vulnerability exploit isn't about NOP-sled anymore, bypassing PatchGuard isn't
about hooking KeBugCheck anymore.

This paper will present a complete overview of PatchGuard mecanisms, from the initialization to
the Blue Screen Of Death, and insights about how we implemented a driver able to disable it.

Especially, this research has been conducted using timeless analysis with Tetrane’s tool REVEN.
Not a single debugger was used during this entire analysis.

This document is an independent publication and is neither affiliated with, nor authorized, sponsored,
or approved by, Microsoft Corporation.
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| - Introduction

This paper will present a complete overview of PatchGuard mechanisms, from the initialization to the Blue
Screen Of Death, and insights about how we implemented a driver able to disable it.

In this introduction we will first have a few words about timeless analysis, then we will see what PatchGuard is
about and an overview of how it works, and our approach to analyze it.

A - Few words about Timeless Analysis with REVEN

For this research we used timeless analysis. Since most don’t know what it is, | guess it's good to present it in
a few words.

Where a classic debugger can give you the state at a specific instruction and can only go forward in execution,
Timeless Analysis is a mechanisms that allows you to time-travel through the execution of your entire system
and instantly retrieve the full state of the system (Full memory, User and Kernel, Hardware Events, any
process/thread).

Timeless Analysis workflow consists in several steps:
* Recording the full execution of the virtual machine (more than 10 billions instructions is ok)
* Replaying the recorded scenario on a simulated CPU
* Analysing the produced trace as in any debugger, but time-travel

For PatchGuard, this allowed us to record only once the initialization and the Blue Screen Of Death and work
with it all along this research. With a classical debugger, one would have to set a lot of breakpoints just to be
able to circumvent anti-debug checks, and a lot more to observe specific states of the system. Furthermore,
as PatchGuard basically encrypt itself when it's not running, we could easily retrieve the full decrypted state of
it.

See more informations about REVEN awesome functionnalities at VII - B in this article, and visit our website
and blog at www.tetrane.com and blog.tetrane.com. Don't hesitate to contact us and enjoy the read!

B - What’s PatchGuard

PatchGuard, originally named « Kernel Patch Protection », is a Windows mechanism that aim to defend the
kernel against patches. Here is a statement from Microsoft FAQ:

« Because patching replaces kernel code with unknown, untested code, there is no way to assess the quality or
impact of the third-party code... An examination of Online Crash Analysis (OCA) data at Microsoft shows that
system crashes commonly result from both malicious and non-malicious software that patches the kernel. »

Patching the kernel has never been supported by Microsoft because it can cause a number of negative effects.
From the vendor point of view, PatchGuard forced them to stop using undocumented structures to proceed
with their detection mechanisms. And from malware writers point of view, PatchGuard prevents Rootkits from
being persistent and difficult to detect or remove. As such, PatchGuard is of great interest from an attacker
perspective.

C - How does it work?

PatchGuard will check many structures and code area from the kernel that can be used by an attacker/vendor
to perform sensitive operations. As said before, an attacker can hook some structures such as the Interrupt
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Descriptor Table (IDT) or other structures, and PatchGuard will prevent this by performing checks. For
example, a non-exhaustive list of checked structures include:

« IDT/GDT

*  Debug routines

* Loaded module list

*  PatchGuard code and structure itself

+ etc.

An unexhaustive list is also available on the MSDN in the BugCheck 0x109 page.

The basic idea behind PatchGuard is that it will compute the checksum of sensitive structures regularly during
the execution time of the system, and will compare it with the one obtain at boot time, before any user driver
load. If a modification is detected, then PatchGuard will trigger a Blue Screen Of Death (BSOD) with the

BugCheck code 0x109 (CRITICAL_STRUCTURE_CORRUPTION), considering that the system is compromised.

Now, since PatchGuard runs at the same level than any driver, it will always be possible to disable it, as long
as you can find it. And this is where PatchGuard is complicated. Because it has to hide itself from an attacker,
PatchGuard uses many mechanisms that will be described in this paper. This is important because it also
defines how we successfully disabled it (with some limitations not really related to PatchGuard), by looking for
each and every places a PatchGuard context could be.

D - Our approach: Timeless debugging

To analyze PatchGuard we first developped a driver to patch the IDT. Then with REVEN, the Timeless Analysis
tool from Tetrane, we recorded both the initialization of PatchGuard and the process of triggering the BSOD.
For instance, here is how we can use memory history on the patched IDT to get the list of memory accesses
to this area, showing the instructions responsible for the check:
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d lea
lea
b eall
sgdt
sidt
ret
# 10800005411 ----
oxffffa 0 mov
oxffffa 7 mov
oxffffa 3 mov
Oxffffa e add
oxffffa nov
oxffffa nov
oxffffa xor
oxffffa nov
Oxffffa nov
oxffffa 3 mov
oxffffa a0 mov
Oxffffad 3 mov
oxffffa nov
Oxffffa e mov
oxffffa nov
nov
nov

2 mov

nov
nov
nov
nov
nov
S shr
and
nov
nov
6 lea
a cnp
fd jne

4 10800 005444 --
g mov

oxffffa
oxffffa
nov
test
7 jne

movzx eax,

rdx, Lrbp +
rcx, [rbp +
Oxffffadobd2

- unknown

[recx]
[rdx]

unknown

rcx, QWORD PTR [rbp + 0x382]
edi, rl3d

QWORD PTR [rbp + 0x401, rcx
rcx, 4

QWORD PTR [rbp + 8], rex
rax, QWORD PTR [rsi + 0x728]
rled, rlod

OQWORD PTR [rbp + 0x1b&8l, rax
rg, rlz

eax, DWORD PTR [rsi + 0x710]
rlad, riod

rlSd, DWORD PTR [rsi + Ox70c]
OQWORD PTR [rbp + 0x701, 3
rl3, QWORD PTR [rsi + 0x730]
DWORD PTR [rbp + 0x28], eax
rl2, crg8

cr8, rbx

movzx eax, WORD PTR [recx - 4]
movzx rgd, WORD PTR [rcx]

WORD PTR [rbp + al, ax
ear, WORD AGNGEET (C o fiffadobd] 3008 : 0x41424241

rcx, QWORD PTR [rsi +

CPU
Only medified
s #10800005433
ary XU
drl 0x0
drz 0x0
dr3 Ox0
dré oxffffoffo
dr7 0x400
gdtr_base oOxfffffsozdossffbo
gdtr_limit 0x57
Tdtr_base Ox0
Tdtr_limit o0x0
|idtr base 0xffffadobdl3ffoon)
idtr_limit oxfff
tr_base oxfffffeo2dosse000
tr limit 0x57

Hex dump @ds: 0xffffad0bdl 3ff000

Grouping: | Byte =
Offset 01 2/ 3 4

DWORD PTR [rbp + OxBcl, eax
rbx, QWORD PTR [rbp + 0x68]
réw, Oxd

réw, 3

eax, edi

WORD PTR [rbp + 0x72], rBw
rdx, [rex + rax*g]

rbx, rdx
Oxffffadobd2b7!

- unknown

rls, QWORD PTR [rbp + 0x70]

movzx eax, rlzb

crd, rax
rl4, rl4
Oxffffadobd2b70dce

- unknown

mnov
Xor
mov

mov  QWORD PTR [rax], rbx
S mov  DWORD PTR [rax + 0x10], 0x80
test r9, r9
ie My ffffadOhd2h70hAZ
Selected idtr_base (8 bytes) | Previous Next Change

rdx, QWORD PTR [rbp + 0x1bg]
rbx, rdx
Oxffffadobd2b7

b34

- unknown

r9, QWORD PTR [rbp + 0x70]
rlzd, rlzd
rax, QWORD PTR [rsi + 0x54

2]

Walues: Before (e After

5(6(7. 8.9

After -
#10800005433
UKy
0x0
0x0
0x0
oxffffoffo
0x400
oxfffffeozdoseffbo
Ox57
0x0
0x0
Oxffffadobdl3ffoom
oxfff
Oxfffffe02dos6e000
Ox67

(=]

Options.,
a b c d

oxffffadobdl3ffooo|44 43 10 00 0O

BE 46 45| 41 |42

42 41 41 42

OxffffadGhdl2ffEl0 00 BF 10 0O 00
Oxffffadobdl3ffe20 Co CO 10 00 03
oxffffadobdl3ffo30 Co C4 10 00 00
oxffffadobdl3ffe40 Co C5 10 00 0O
Oxffffadobdl3ffes0 CO C6 10 00 0O

nvffffadnhdl 2ffoRn A0 ra 16 an 6n
Transition Type

#10B00005433 (R

Start address
OxffffadObd13ffoos| 4

#10800093854 . oxfffTadohd13ffoos 8

8E SF CD 02 F&

8E SF CD 02 F&

EE SF CD 02 Fe

EE 5F CD 02 F8

8E SF CD 02 F&

aF 5F N N2 FR

FF FF 00 00
FF FF 00 00 00 00 ... ..c_ovvvunnns
FFFFO0 00 00 00.....c_vvvvnnnns
FFFF 000000 00.... .._...vonuns
FFFFOO OGO OO 00......_.........

FE FFE AR AR AR AR &
Size

Exhaustive list of accesses to the IDT entry

¥ Show access history of selection

By using this Memory History feature, this allowed us to quickly find the checksum algorithm and the

encryption key used to randomize it.
We then discovered the decrypted in-memory PatchGuard context structure, used by PatchGuard to hold

information and perform checks.

After analysing many entries we got a good overview of how main mechanisms of PatchGuard work and we
were able to continue this analysis with both static analysis and Timeless Debugging to observe the execution

workflow.
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Il - Initialization

In this part we will describe how PatchGuard initialize its contexts and verification mechanisms. It is mostly
done by KiFilterFiberContext. KiFilterFiberContext were originally named this way to mislead analysts, but it is
a well known function now.

A - Call to KiFilterFiberContext

The initialization of PatchGuard is performed mostly by KiFilterFiberContext. This function is called at the
beginning of the boot, before any user driver load. KiFilterFiberContext is called in two manners, that are
detailed hereafter.

1 - Triggering an exception in KiAmd64SpecificState

The initialization of PatchGuard uses an exception handler as an obfuscation method. Triggering voluntarely a
division error, the exception handler is executed and the patchquard initialization function is called. This
mechanism is visible at the beginning of the boot process.

Here are the faulty instructions we can see with REVEN:

Oxfffff803c98dabdl movzx edx, byte ptr [rip - 0x4f3255] ; KdDebuggerNotPresent
Oxfffff803c98dabd8 movzx eax, byte ptr [rip - 0x51ee66] ; KdPitchDebugger
oxfffff803c98dabdf or edx, eax

oxfffff803c98dabel mov ecx, edx

Oxfffff803c98dabe3 neg ecx

oxfffff8e3c98dabes sbb r8d, rad

oxfffff803c98dabe8 and r8d, oxffffffee

Oxfffff803c98dabec add r8d, Ox11

oxfffff803c98dabfo ror edx, 1

Oxfffff8e3c98dabf2 mov eax, edx

Oxfffff803c98dabf4 cdq

Oxfffff803c98dabfs divide error while executing idiv r8&d

What's interesting here is that the two values used to compute the division are actually known symbols:
KdDebuggerNotPresent & KdPitchDebugger. These two values are used to determine if a debugger is
attached or not. As such, if a debugger is present then PatchGuard isn't initialized.

In a normal scenario, these two variables are set to 1, which gives at the idiv instruction the values
rax=0x80000000, rdx=0x80000000 and r8d=0xffffffff. The idiv instruction computation is the following:

[edx:eax] / r8d
i.e. OXx8000000080000000 / OXFfffffff

As defined in the AMD64 documentation, * If a positive result is greater than 7FFFFFFFH or a negative result is
less than 80000000H *, then a divide error is triggered. In this case, both operands are negative which should
give a positive result, but the result of this division is 0x80000001, hence the divide error.

As soon as the divide error is triggered the function KiDivideErrorFault is executed, which proceeds to dispatch

the exception to the rightful handler. In this case, the handler is only a stub for the KiFilterFiberContext
function:

© 2019 Tetrane Updated Analysis of PatchGuard on MS Windows 10 RS4 v1.00 9/61
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; Exception handler for KiInitAmd64SpecificState
Oxfffff803c98f1dic push rbp

Oxfffff8e3c98flidlie sub rsp, 0x20
Oxfffff803c98f1d22 mov rbp, rdx
Oxfffff803c98f1d25 xor ecx, ecx
OxXfffff803c98f1d27 call Oxfffff803c98aGbbo

; KiFilterFiberContext - ntoskrnl.exe
OXfffff803c98a0bbd mov gword ptr [rsp + 8], rbx

[...]

The callstack we got from REVEN is the following:

KiFilterFiberContext
KiInitAmd64SpecificState_ ExceptionHandler
__C_Specific_Handler
Rt1lpExecuteHandlerForException
Rt1lDispatchException

KiDispatchException

KiExceptionDispatch

KiDivideErrorFault
KeInitAmd64SpecificState // Triggers a page fault
PipInitializeCoreDriversAndElam
IopInitializeBootDrivers
IoInitSystemPreDrivers

ToInitSystem

KiFilterFiberContext is known to be responsible for calling the initialization procedure with specifics
arguments to create Patchguard contexts.

One thing to notice here is that one of the argument is hard-coded to O, which gives a hint about the fact that
it is probably called elsewhere. As a matter of fact, another initialization has already been documented and
points to the function ExpLicenseWatchinitWorker.

2 - ExpLicenseWatchInitWorker

This function is called before KelnitAmd64SpecificState, in the boot process. Here is the callstack:

KiFilterFiberContext
ExpLicenseWatchInitWorker
ExInitSystemPhase2
PhaselInitializationDiscard
PhaselInitialization

The ExInitSystemPhase?2 is also responsible for calling the function ExpGetNtProductTypeFromLicenseValue,
which is clearly related to the Microsoft license verification.

What's interesting in this case is the fact that ExpLicenseWatchInitWorker will call KiFilterFiberContext, but
only with a low probability. Many mechanisms of PatchGuard uses random values (with the instruction rdtsc)
to decide things and in this case, it is used to decide whether or not KiFilterFiberContext should be called,
with a probability of 4%.

Several points, and one in particular are to be noted in this function.
*  The first thing to notice is once again, this function includes some checks for the presence of a
debugger and the safe boot mode.

*  The second thing, not especially related to PatchGuard is the fact that the return value of this function
is the random value generated by the rdtsc instruction, multiplied by a constant value Ox51eb851f

© 2019 Tetrane Updated Analysis of PatchGuard on MS Windows 10 RS4 v1.00 10/61
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(this is actually a constant to optimize a division). If we only suppose that the function is called by
ExInitSystemPhase?, this random returned value is later used as an index if InitlsWinPEMode is true:

mov al, ri5b ; eax 1s NOT zero extended here

loc_1408EAFBB

inc rax

cmp [rcx + rax*2], di ;RAX is the following: [0000.0000][RAND][r15b]
jnz loc_1408EAFBB

a - Structure passed to KiFilterFiberContext

KiFilterFiberContext, this time, is called with a structure. This structure is build from values fetched from the
PRCB (Process Register Control Block), from the HalReserved field, along with the pointer to
KiFilterFiberContext:

oxfffff8e3co8dedda mov  rax, gword ptr [rip - ©x46d3ai] ; KPRCB
oxfffffge3co8dedel mov  ril, gword ptr [rax + 0x78] ; HalReserved[6]
oxfffff8e3c98dede5 mov  rbx, gword ptr [rax + 0x70] ; HalReserved[5]

Oxfffff803c98dede9 and gword ptr [rax + 0x78], O
Oxfffff803c98dedee and gword ptr [rax + 0x70], ©

As one can see, these fields are cleaned right after.

Here is a pseudo code of ExpLicenseWatchiInitWorker:

DWORD64 ExpLicenseWatchInitWorker ()
{
KiFilterParam = Prcb.HalReserved[6]; // &KiServiceTablesLocked
pKiFilterFiberContext = Prcb.HalReserved[5]; // &KiFilterFiberContext
Prcb.HalReserved[6] = 0;
Prcb.HalReserved[5] = 0O;
if (InitSafeBootMode != 0 | KUSER_SHARED_DATA.KdDebuggerEnabled >> 1)
{
return rand_stuff
}
if(random(0,100) < 4)
KiFilterFiberContext (pKiFilterFiberParam);
}

These two pointers are set at the very beginning of the boot, in the function KiLockServiceTable, it comes
from the following callstack:

KiLockServiceTable
KeCompactServiceTable
KiInitializeKernel
KiSystemStartup

Two things are to be explained from this function. The first one it how it puts the two pointers in the
HalReserved field, and the second one is the function it calls right at the beginning of it.
i - KiLockServiceTable: Filling the HalReserved[] field

To "obfuscate" its control flow, KiLockServiceTable uses once again an exception handler, but instead of
triggering a fault, it calls directly the handler by fetching a pointer to it with RtlLookupExceptionHandler. The
handler itself is only a stub to the function KiFatalExceptionFilter, which we analyzed:
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The first HalReserved field to be filled is the 6th:

lea rbx, KiServiceTableslLocked
[
mo [rsi+(_KPRCB_.HalReserved[6])], rbx

This function KiServiceTablesLocked is a misleading name as it holds a structure instead. This structure is a
parameter given to the KiFilterFiberContext function. As such, it is already named it KI_FILTER_FIBER_PARAM
in literature.

A prototype for this structure is the following:

typedef struct _KI_FILTER_FIBER_PARAM

CHAR code_prefetch_rcx_retn[4]; // prefetchw byte ptr [rcx]; retn;
CHAR padding[4]; // Align
PVOID pPsCreateSystemThread;
PVOID Pg_Method3StubToCheckRoutine_sub_1402CD680;
PVOID pKiBalanceSetManagerPeriodicDpc;
}KI_FILTER_FIBER_PARAM, *PKI_FILTER_FIBER_PARAM;

Details about this structure will be given later since it involve a deep explanation about mechanisms used to
trigger checks routines.

ii - KiLockServiceTable: Checksums initializations

KiLockServiceTable calls right at the beginning the function KiLockExtendedServiceTable, which is also a
PatchGuard related function. It is used to perform a checksum of either several sections or a checksum of the
function table entries. Both results are set in two globals (qword_1403AD4B8 and qword_1403AD4C8) that
will be used later, during the context initialization process.

These checksum mechanisms itself will be explained later in this article.

B - KiFilterFiberContext

As previously seen, KiFilterFiberContext can be called either with an argument (KI_FILTER_FIBER_PARAM
structure pointer) or with NULL (most of the cases, from KiAmd64SpecificState). Its main job is to call the
context initialization routine with specifics arguments. These arguments will mainly determine which method
to use to trigger a PatchGuard check. Since this main initialization function is already known, a common name
is KilnitializePatchGuardContext (from literature).

1 - Quick Overview

Here is a pseudo code of KiFilterFiberContext:

KiFilterFiberContext (PKI_FILTER_FIBER_PARAM pKiFilterFiberParam)

{
AntiDebug();
randl1_10 = _ rdtsc() % 10;
rand2_1 randl_10 > 6;

rand3_6 = _ rdtsc() % 6;
rand4_13 = _ rdtsc() % 13;

© 2019 Tetrane Updated Analysis of PatchGuard on MS Windows 10 RS4 v1.00 12/61




©

TETRANE

// First initialize a global in memory, this will be explained
if(!g_pGlobalCtx

&& !'pKiFilterFiberParam

&& !'KpgApiRegistered)

if(PsIntegrityCheckEnabled)

Notify_Callback("TV", Pg_TVCallback_CheckRoutine_sub_1401825A0, &KpgApiConsumerRanges)
if ( KpgApiConsumerRanges )
KpgApiRegistered = 1;

// Now initialize a first context
result = KiInitPatchGuardContext(
rand3_13,
rand2_6,

rand2_1 + 1,
pKiFilterFiberParam,
1)

if (result)

if (rand1_10 < 6)

{
rand5_13 = _ rdtsc() % 13;

// Get a random value < 6 but different from rand3_6
rand6_6 = __rdtsc() % 6;
while ( rand6_6 == rand3_6)

rand6_6 = _ rdtsc() % 6;
}

// Initialize a second context
result = KiInitPatchGuardContext(
rand5_13,
rand6_6,

rand2_1 + 1,
pKiFilterFiberParam,
0);

1
if(result)

if(!g_pGlobalCtx
&& !'pKiFilterFiberParam
&& (KiSwInterruptPresent()>=0)
&& KpgApiRegistered)

localvar = 8;
if (KiSwInterruptPresent() >= 0)

localvar = 0;

}

// Initialize a Third context
result = KiInitPatchGuardContext(®, 7, 1, 0, localvar);

}

if(result && !pKiFilterFiberParam)

{
// Zero stuff
memset (&KpgKernelExtents, 0, 24);
KpgProtectedFunctionExtentsSupported = 0;
KpgDisabledTimerMethods = 0;
KpgProcessListOverflowLock = 0;
dword_1403AD510 = 0;
gqword_140904080 = 0;
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AntiDebug();

return result;

This function is slightly more complicated than previous version of it from Windows 8.1 but still, the main idea
remains the same: using mostly random values as arguments, KilnitPatchGuardContext is called up to three
times ; the first time occurs no matter what, the second with only a 50 % chance, and the third time, with a
new method, is quite special, occurs most of the time, and will be described in this article. One other new
thing is the notification of a callback named « TV », which comes from an other binary.

C - Initialization of PatchGuard contexts

Most of the initialization methods depend on the KilnitPatchGuardContext, which arguments decide how
checks will be triggered, but other mechanisms exist. In this section, we will describe what is a PatchGuard
context, and describe the multiple methods PatchGuard uses to hide itself in the system. If many of these
methods are already known, but not all, we will try to describe them with care since this is the base of the
code we developped to disable PatchGuard completely.

1 - PatchGuard context: Definition

In literature, a PatchGuard context used to describe the huge structure that is used by PatchGuard to perform
checks. But with time, we can see that when researchers says « | found a PatchGuard context », they don't talk
about the structure but more of an « instance » of PatchGuard, which basically means the combination of a
method and a structure ; the method being how checks are initialized and triggered, and the structure being
the entire amount of data used by PatchGuard to perform checks.

a - Structure

To analyze its content and initialization we analyzed most of the accesses done to its fields and correlated it
with the KilnitPatchGuardContext function.

Hereafter are some explanations of some interesting fields in this structure. This isn't exhaustive and much
detailed but it give a hint of what can be found whithin this structure.

It is mainly separated in three sections. The first one, of size 0x928 is the one holding the core content of
PatchGuard mechanisms. The second one is more of a data recipient, that will keep original data for later use.
And the third part holds information about data to check.

i - First part

*  CmpAppendDllSection
The very beginning of the PatchGuard context structure holds the code of the function CmdAppendDlISection.
This code is copied directly in the structure at 0x1408929CC, and will be used later when the integrity check
is triggered by PatchGuard. Its main job is to decrypt (xor) the rest of the PatchGuard context structure with a
randomly generated key. With the memory history of accesses and time-travel debugging we easily find that
the key is generated at 0x1408A8291. For methods using DPC, this key is passed as DeferredContext
argument. If we take the example of function PopThermalZoneDpc, the KiProcessExpiredTimerList will call it
with the DeferredContext in rdx.

* Nt API pointers
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Next part of the structure holds many function pointers (more than 100) from ntoskrnl API. These pointers are
kept this way so that PatchGuard routines can use them independently from a relocation, and for some of
them to be able to copy them (just like CmdAppendDLUSection). This makes sense because the main
verification routine actually doesn't use directly the ntos function but instead a full copy of it copied in
executable memory.

Most of these pointer are initialized near 0x140892AC4:

sti

lea rax, ExAcquireResourceSharedLite

mov [r14+pg_ctx_rs4.ntoskrnl_ExAcquireResourceSharedLite_0xe8], rax
lea rax, ExAcquireResourceExclusivelite

mov [r14+pg_ctx_rs4.ntoskrnl_ExAcquireResourceExclusivelLite_0xf0], rax
lea rax, ExAllocatePoolWithTag

mov [r14+pg_ctx_rs4.ntoskrnl_ExAllocatePoolwWithTag_ 0xf8], rax

[...]

Most of these function have known symbols and are common Windows Kernel routines, yet a few of them are
unamed routines directly related to PatchGuard. For example at 0x1401812EQ, the function is only here to call
directly the deferred routine entry of a DPC, which is used by PatchGuard at some point.

* Pointer to Global Variables their Values
Many references to global variables are stored and used. For example it holds two values originally held by
globals KiWaitAlways and KiWaitNever at offsets Ox4e0 and 0x5b8. These values are initialized randomly at
boot time and we will see later that these per-boot random values are used to encode and decode PatchGuard
DPC pointers. An other example of interesting global is the one that holds a pointer to an other PatchGuard
context structure, at offset Ox5f8. This pointer is used multiple times as a clean backup of a structure. It is also
the structure pointed by this global that is send in case of a KeBugCheck, as one can see in the
KiMarkBugCheckRegion:

mov rcx, cs:Pg_GlobalCtx_qword_14045E208

test rcx, rcx

jz short loc_1401812BD

mov edx, 928h // Size of the PatchGuard structure
call IoAddTriageDumpDataBlock

* Common variables
System related variables:
In this category we can find variables such as Ntoskrnl and Hal base addresses, the current PRCB, the
maximum virtual addressing size, and else. We can also find the Initialization Vector used with checksums of
critical structures, or the shift value used to derive the Initialization vector at each block iteration. Both these
values are initialized randomly with rdtsc at 0x1408937A0. In the same way, the checksum of the PatchGuard
context is stored in itself. To detect any corruption it is firstly computed during the initialization and compared
to runtime computed checksums at the beginning of each check routines.

*  Runtime variables
Some fields are also used as runtime variables to keep track of check routine states. We can find for example
the total amount of data checked for what one can call a "check session". As explained previously with the
third argument to KilnitPatchGuardContext, it is incremented after each critical structure checksum by the size
of it, and compared to a maximum. The data necessary for the the scheduling method is temporary stored in
the context structure, such as DPC structure, ETHREAD pointers so that it can calls function like
KilnsertQueueApc. One can also find parameters that are passed to KeBugCheck in case of a detected
corruption, or the scheduling method, passed as parameter to KilnitPatchGuardContext.
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* Flags
One of the main flag is the one located at offset 0x828.
It is used as a bitmap representing booleans, such as (Non-exhaustive list):

BIT 6 0x40 Only one processor

BIT 8 0x100 Use of KibDpcDispatch

BIT 9 0x200 Use of KiTimerDispatch

BIT 15 0x8000 Use of KeSetEvent

BIT 18 0x40000 Related to the ntoskrnl routines checksum
BIT 20 0x100000 Should DR7 be cleared

BIT 24 0x1000000 loc_1402F4907

BIT 27 0x8000000 Should PTE be restored loc_1402F117F

BIT 28 0x10000000 Scheduling method 7, use of KiInterruptThunk
BIT 30 0x40000000 loc_1408A836F Again, scheduling method 7
BIT 31 0x80000000 Result of KiSwInterruptPresent

Other flags exists, but we didn’t analyzed all of them.

ii - Second part
The second part of the structure holds data that will be kept for later use.

* PTEsave
In Windows 10 RS4, exactly 20 entries are saved in the structure. These entries are saved because it mitigate a
bypass. We will see later that these PTE are restored just before triggering KeBugCheck.

¢ Critical Kernel routines save
For the same reason PTE are saved, the entire code of critical kernel is saved right after. For Windows 10 RS4,
here are the routines with their respective offset in the structure:

Hal HaliHaltSystem_0x930

Ntosrknl  KeBugCheckEx_0x940

Ntoskrnl KeBugCheck2_0x950

Ntoskrnl  KiBugCheckDebugBreak_ 0x960

Ntoskrnl KiDebugTrapOrFault_ _0x970

Ntoskrnl RtlpBreakWithStatusInstruction_OR_DbgBreakPointWithStatus_0x9860
Ntoskrnl RtlCaptureContext_0x990

Ntoskrnl  StartOfChunckFor_KeQueryCurrentStackInformation_0x9a0
Ntoskrnl KeQueryCurrentStackInformation_0x9b0o

Ntoskrnl KiSaveProcessorControlState_0x9c0O

Ntoskrnl  memcpy_OR_memmove_0x9d0

Ntoskrnl IoSaveBugCheckProgress_0x9e0

Ntoskrnl KeIsEmptyAffinityEx_0x9f0

Ntoskrnl VfNotifyVerifierOfEvent_0xa00

Ntoskrnl _guard_check_icall 0xal®

Ntoskrnl KeGuardDispatchICall_0xa20

Ntoskrnl g_pxHalHaltSystem_0xa30

Once again we will see later that these functions are restored just before triggering KeBugCheck. All these
function comes with their respective size so the restore routine knows how much to rewrite. The code itself is
stored later in the structure. Something interesting is that the last "function” is actually only a pointer to
xHalHaltSystem.

iii - Third part

To keep track of what structure needs to be checked, PatchGuard uses an array of structures that holds the
necessary information for each checks.
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*  Critical structure for checks
Here is a prototype of one structure

struct pg_crit_struct_check_data

ULONG64 KeBugCheckType_0x0; // 0x2 for IDT, 0x3 for GDT, etc.
ULONG64 pData_0x8;
ULONG32 szData_0x10;
ULONG32 hash_0x14;
ULONG64 specific[3];
}i

The KeBugCheckType is used to distinguish structures type. A non-exhaustive list is available in the MSDN
documentation as this information is given along with the KeBugCheck issued by PatchGuard (see
documentation for BugCheck 0x109: CRITICAL_STRUCTURE_CORRUPTION).

Next there is both a pointer to the data to be check coupled with the size to be checked. The important value
is the checksum result. This checksum is computed during the initialization of PatchGuard and will be used as
reference when PatchGuard will check the integrity of the corresponding structure.

Finally, the last entries from this structure are specific to the data that has to be checked. For example, for the
IDT check case, this specific value will hold the target processor which has been used to execute. In general,
this means that this structure can differ regarding the checked structure, and indicates that the check code
isn't exactly the same for all structures.

¢ Relative entries in the PatchGuard context structure

These structures are stored in an array in the PatchGuard context structure. Several entries exist in the first
part of the PatchGuard context structure to use this array:

Ox680: Total count of critical structure in the array
0x684: Offset to next critical structure data to checksum
Ox6a8: Offset to the first critical structure data

Ox6ac: Current count of checked structure

These information are important and used by PatchGuard in its check algorithm.

2 - PatchGuard context: Initialization

PatchGuard context are mostly initialized by KilnitPatchGuardContext. This function is actually unnamed but is
known in literature. We will see in this section that other methods exists to initialize PatchGuard context, and
in some cases, some independant way of checking the system are set up.

a - KilnitPatchGuardContext: Method 0, 1, 2, 3, 4,5, 7

As stated, this function is responsible for the initialization of most PatchGuard contexts. The choice of which
method is to be used is done regarding the argument given to this function. These argument are mostly
randomly choosen, as we described in the KiFilterFiberContext overview. In this section we will go through
argument given to this function that will describe how PatchGuard checks are initialized and triggered after.

Here are the argument given to this function:

* - Arg 1: Index for DPC method
* - Arg 2: Scheduling method
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* - Arg 3: Random value used to determine the maximum size to be checked
* - Arg 4: Pointer to the structure from ExpLicenseWatchlnitWorker (only 4 % chance)
* - Arg 5: Boolean to decide whether or not the integrity of nt routines has to be checked

In our case, the most important arguments are the 2nd one (the method used to schedule a check) and the
4th one (that allows more scheduling methods). In KiFilterFiberContext, a random value is given as an index
for the second argument, which will decide what method should be used. In this section we will first describe
the different method that KilnitPatchGuardContext may initialize combined with the 4th argument regarding
the method. Then we will have a quick look at other arguments.

i - Method 0 - Inserting a timer, linked with a DPC

The main idea with this method is that PatchGuard will initialize a PatchGuard Context structure and a DPC
(Deferred Procedure Call), and set it in a timer structure. The timer is then queued with
KeSetCoalescableTimer, around 0x1408A8920. The timer will fire the DPC from the first argument between 2'
to 2'10" following the call. This timer isn't periodic, and has to be restored at the end of the check routine but
we will see this later in this article. The TolerableDelay parameter is a random value between 0 and 0.001
second.

ii - Method 1 and 2 - Hidden DPC

When the 2nd parameter to KilnitPatchGuardContext is 1 or 2, PatchGuard initialize a context structure and a
DPC structure, but instead of using a timer, hides it in the kernel structure PRCB (Process Register Control
Block). What is interesting with this method is that legit function from the system are actually responsible for
queuing the DPC.

*  AcpiReserved
For method 1, the pointer to the DPC is hidden in the field AcpiReserved from the PRCB:

mov rax, [rsp+2238h+KPRCB_var_308]
mov [rax+_KPRCB_.AcpiReserved], r8 ; DPC initialized by PatchGuard
jmp loc_1408A89CE

It is queued in HalpTimerDpcRoutine, and check that at least two minutes have elapsed between each check.
To keep count of when the last queue occured, it uses the global variable HalpTimerLastDpc. This global
variable is initialized in HalpTimerSchedulePeriodicQueries, and its value is taken from the global variable at
OxFFFFF78000000014, which is related to the uptime (of the machine | think, but 'm not sure of this).
HalpTimerDpcRoutine is called when a certain ACPI event occurs, e.g. transitioning to idle state.

* HalReserved
For method 2, the pointer to the DPC is hidden in the field HalReserved from the PRCB:

mov rax, [rsp+2238h+KPRCB_var_308]
mov [rax+(_KPRCB_.HalReserved+38h)], r8 ; DPC initialized by PatchGuard
jmp loc_1408A89CE

Side note: Recall that this field (but entry of this array), is also used to keep a pointer to structure
KI_FILTER_FIBER_PARAM when KiFilterFiberContext is called from ExpLicenseWatchinitWorker.

It is queued by HalpMcaQueueDpc, also with a 2 minutes minimum period, and checks are done when HAL
timer clock interrupt occurs (see HalpTimerClockinterrupt/HalpTimerAlwaysOnClockInterrupt).
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iii - Method 3 - System Thread

This case needs a pointer to a KI_FILTER_FIBER_PARAM structure, which has only a 4 % chance to happen
(from the function ExpLicenseWatchInitWorker, explained at Il - A - 2 - a). An overview of this structure has
already been shown previously, but recall that it holds a pointer to the PsCreateSystemThread function. This
pointer is used to create a new system thread in the function sub_1408A9518 (that we conveniently name
Pg_InitMethod3SystemThread), with the function sub_1402CD680 (offset 0x10 in the
KI_FILTER_FIBER_PARAM structure, which is a stub to the verification routine, so we conveniently name it
Pg_Method3StubToCheckRoutine_sub_1402CD680) as a StartAddress. Pg_InitMethod3SystemThread is
called directly in KilnitPatchGuardContext at 0x1408A5B88.

One interesting thing to note is the elegant obfuscation that is added. The idea is that some bypasses used to
target the entry StartAddress and Win32StartAddress from the ETHREAD structure to identify a PatchGuard
thread, so in Windows 10 they modified these entries with common function pointers:

Right after the thread creation, PatchGuard acquires a pointer to the corresponding ETHREAD (without lock,
just sayin') and modifies both fields StartAddress and Win32StartAddress:

lea rcx, Pg_FuncArray_off_1408F71EQ

mov rcx, [rcx+rax*8] ; rax is a random value

mov rax, [rspt+@A8h+var_68]

mov [rax+ETHREAD_.anonymous_1.anonymous_0.StartAddress], rcx
mov [rax+ETHREAD_.Win32StartAddress], rcx

To do so it first get a random value between 0 and 7 and fetch a function pointer in an array in memory at
offset Pg_FuncArray_off_1408F71EQ. Here is the content of this array:

index |Function name
0 KeBalanceSetManager
1 KeSwapProcessOrStack
2 ExpWorkerThread
3 PoplrpWorker
4 FsRtlWorkerThread
5 EtwpLogger
6 Pg_Method3StubToCheckRoutine_sub_1402CD680

Only the last entry is the right one, which means that there is only one out of seven chance that fileds
StartAddress and Win32StartAddress in the ETHREAD structure are correct.

iv - Method 4 - Asynchronous Procedure Call

The fourth method initializes a PatchGuard Context structure and an APC structure, and directly inserts it to an
existing system thread. The NormalRoutine argument is set to xHalTimerWatchdogStop, which is actually just
a « ret 0 » instruction. The KernelRoutine is set to KiDispatchCallout which will call the verification routine in a
way, and the RundownRoutine is NULL..

These arguments are set at 0x14089555B (initialization of function pointers in the context structure) and
0x1408A8734 (preparing the arguments for KilnsertQueueApc call).
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The way it choose which thread to attach to is done using PsEnumProcessThreads with the callback
Pg_lsStartAddressPoplrpWorkerControl_sub_1408A9B70, which job is to query the thread start address and
compare the result with PoplrpWorkerControl. If such thread is to be found, then a pointer to the ETHREAD
structure is stored at offset 0x830 into the PatchGuard context structure, and is later copied into the KAPC
structure given to KelnsertQueueApc.

v - Method 5 - Hook a regular DPC

Just like method 3 (using a system thread), this method requires a valid KI_FILTER_FIBER_PARAM structure,
otherwhise KilnitPatchGuardContext will fallback to method 0.

For this method, the last entry of the structure is used, which is a pointer to the global variable
KiBalanceSetManagerPeriodicDpc. This variable holds a KDPC structure and its DPC routines are initialized in
the function KilnitSystem. What is elegant in this method is that it is actually a legit DPC, that is queued by the
system every second or so by KeClockInterruptNotify, at 0x1400619b6; and PatchGuard hook this legit DPC
so that every 120 queues (actually, like many other method, a random value between 120 and 130 times), the
PatchGuard DPC is queued instead of the legit one.

Here is a diagram simplifying this mechanism code:

global KDPC (COPY)
global KDPC KiBalanceSetManagerPeriodicDpc
KiBalanceSetManagerPeriodicDpc { [ ]
{ [-..] pLegitRoutine
! ! PgHook [...1
[...] PgHook() }
}
if (--count > 0)
QueuelLegitDPC
else
memset (copy_of_glboalDpc, 0)
QueuePGDPC
}
KDPC
PgDpc
{
[-*-‘-]k
CheckRoutine
KeClockInterruptNotify ?___]
}

If the PatchGuard DPC is to be queued, then it first proceed to clear the copy of the global DPC, and let the
verification routine setting it back at the end of the check.

Vi - Method 7 - the new weird one.

(No, there is no method 6, | don't have any explanation for that.)

At first sight, this method does... nothing. Well, almost nothing. It actually does two things. The first thing is it
initializes a DPC to be queued, but clears it right after so never queues it. The second is it initializes a global
PatchGuard context structure, which will be available through a global pointer for the system. This global
PatchGuard context structure is actually in cleartext in memory, and remains at the end of the initialization
function. In this part we will describe what we found especially for the DPC that isn't used.

¢ Unused DPC
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When the index 7 is given to KilnitPatchGuardContext, many specific branches are taken. Especially, a DPC is
initialized and the routine is defined as one of the KilnterruptThunk functions, or one of the
KiMachineCheckControl functions. KilnterruptThunk and KiMachineCheckControl are both a set of 16 stubs,
respectively to the function FsRtlTruncateSmallMcb and KiDecodeMcaFault, that in turn will call the check
routine FsRtIMdIReadCompleteDevEx. In the initialization function KilnitPatchGuardContext, it is the
KilnterruptThunk function that is used, but we will see later that some references to KiMachineCheckControl
exist in other PatchGuard routines.

To use this function array, a random value from O to Oxf is generated (rdtsc & Oxf), and then used as an index
in these stubs. Even though 16 stubs are available for each function, there are only two different types of
stub:one clears the DR7 (debug register) before calling the check routine and the other doesn't.

Here are the two different stubs for the KilnterruptThunk function:

33 CO xor eax, eax

90 nop

90 nop

90 nop

E9 F6 AF 12 00 jmp FsRtlTruncateSmallMch
66 OF 1F 44 00 00 align 16h

33 Co Xor eax, eax

OF 23 F8 mov dr7, rax

E9 E6 AF 12 00 jmp FsRtlTruncateSmallMch
66 OF 1F 44 00 00 align 16h

Both or the exact same size, thanks to NOP instructions.

These two stubs are repeated 8 times, and the random value is used to picks one of them. For the
KiMachineCheckControl function, stubs are almost the same with the difference in that KiDecodeMcaFault is
called instead of FsRtlTruncateSmallMcb.

Now, as we said before, the problem with this method is that it doesn't seem to do anything more. Other
methods use the DPC by coupling it with a timer or putting it somewhere in memory so that the system can
queue it at some point, but this one doesn't. Here is a technical analysis to detail our finding. Even though it
doesn’t proove that there is no path whatsoever that may queue this DPC, it will show some of our research
regarding this method.

Technical analysis:
Using Reven as a time-travel debugger, we followed the execution for this initialization to find why there is no
handler for this method.

*  First Check: test the flag with 0x10000000

Starting from the block that randomly choose the KilnterruptThunk stub, we find a check on a flag right before
at 1408A8308:

test [rsp+2238h+flag_828_on_stack_var_140], 10000000h

Let’s analyze where this flag comes from.

This flag comes from the PatchGuard context and we can use the memory history to find out where it comes
from. Going through several memcpy with the Memory History feature from reven, we find that this flag is set
at 0x140891B60. Here is a screenshot of how Memory History can be used to find this:
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0Ox 39 05 60 c6 bc ff cmp dword ptr [rip -
eax #75860: oxffffasog31010a98 8
Ox sban 74 07 je oxfffffao al 1E:) f

#75864; 0 i i

# KiFilterFiberContext+0x2ff2 - ntoskrnl.exe REtrIEVln the write 0 the blt
0Ox 41 09 96 2c 08 00 0O or dword ptr [rl4 + 0x22c], edx #7555471s7|w ‘axffffasnsammagg‘
0% 45 85 e4 test rl2d, rl2d .
O - of 85 25 od 00 00 jne Oxfffffso3 2d7 ($+0xd2b) #758647191 BN 0xffffa50831010a99 4
# - KiFilterFiberContext+0x3d27 - ntoskrnl.exe e M v
oxf a cli 7 sh hist f salecti
0% 38 05 a5 30 ba ff cmp byte ptr [rip - Ox4bcfsbl, al ow access histary of selection

Using the same method multiple times, here is a summary of the results for the flag 0x10000000.

As seen in the screenshot, here is the piece of code that is responsible for setting the flag:

mov ecx, [rl4+pg_ctx_rs4.multiple flag 0x828]
mov eax, riad

btr ecx, 1Ch

shl eax, 1Ch

or ecx, eax

mov edx, 2000h

mov [r14+pg_ctx_rs4.multiple flag 0x828],

It is set regarding the value of r12d. With the time travel debugging again we find that this register is set at
0x140891707:

mov ri12d, dword ptr [rsp+2238h+var_bIsMethod7_2158];

Again, using the Memory History feature on this stack memory location, we find that it has been set at
140890A13:

cmp esi, 7

mov RO CCECECCEECECECCEEEN

cmovz ebx, riad ; ri2 = 1

mov dword ptr [rsp+2238h+var_bIsMethod7_2158],

Here esi contains the scheduling method, which is 7. The last piece of data is r12 but statically we easily find
this it is hardcoded to 1 independently from the control flow.

*  Second check: Test the flag with 0x40000000

Next there is another check to decide whether or not the method dispatcher should be taken:

test [rsp+2238h+flag_828_on_stack_var_140], 40000000h

In the recording of the initialization, this flag is set and the method dispatcher isn't executed.

Using the same mechanism as for the 0x10000000 flag, we find that the flag 40000000h is set at
0x140893BC9:
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cmp esi, 7
jnz short loc_140893BEC
mov eax, [rl4+pg_ctx_rs4.multiple flag 0x828]
and eax, OFBFFFFF7h
bts eax, 1Eh
mov [r14+pg_ctx_rs4.multiple_flag_0x828], eax

Again, esi contains the scheduling method, which is 7. The flag is directly set and there is no modification of it
afterwards.

e Third check: From a stack variable, without correlation to method 7

By following the trace of the execution, we find another last decisive check at 0x1408A8C81 that will decide
whether or not the function KeSetEvent should be called with specifics arguments:

mov rax, [rsp+2238h+var_21E8]
test rax, rax
jz short loc_1408A8CAF

This jump is taken and the KeSetEvent isn't called.
Again with Memory History, we find the origin of this stack area at 0Ox1408A5B9F:

mov [rsp+2238h+ var_bIsMethod7_21E8], ri1

This memory area may be not NULL if the scheduling method is 3 (PsCreateSystemThread) and if the setup of
the new thread succeeded. If so, this stack variable holds a pointer to the StartContext argument given to
PsCreateSystemThread, that we will describe later, but the basic idea is that the new thread will wait on this
object and KeSetEvent will notify it.

¢ Quick conclusion

The whole PatchGuard context is right after completely zeroed (including the previously chosen DPC routine)
and the execution properly exit the function.

We showed that the two firsts checks are directly linked to the scheduling method passed as the second
argument to KilnitPatchGuardContext, and even though it doesn't proove that no path can lead to the real
setup of the method, it shows that there is no obvious flag or random value to do so.

¢ Global PatchGuard Context initialization

As we mentionned before, when the index 7 is given to KilnitPatchGuardContext, a global PatchGuard context
structure is also initialized. This global PatchGuard context can be accessed through a global pointer, located
at 0x14045E208. Many mechanisms are different, such as checksum that are not performed with the usual
algorithm but with some SHA256 related algorithm. We didn’t analyzed these mechanisms specifically since
the idea remains the same.

The fact that this call to KilnitPatchGuardContext with index 7 occurs all of the time is important because it
also mean that this initialization is important, and the fact is that this global PatchGuard context is actually
used by other new methods (compared to Windows 8.1).

This end the description of different methods that can be used by PatchGuard to initialize a context. At this
point we can describe other arguments given to KilnitPatchGuardContext.
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vii - KilnitPatchGuardContext: Other arguments

We stated before that the most important arguments to KilnitPatchGuardContext where the second one
(index used as a method) and the fourth (pointer to KI_FILTER_FIBER_PARAM, from the 4 % chances function
ExpLicenseWatchlInitWorker). This small part is to describe the other arguments.

* Argument 1: DPC Routine pointer

As we described that several methods used a DPC structure to hide PatchGuard and queue it at some point, it
is important to note that the verification routine isn’t set as is in the DPC. The DPC will actually contain a
pointer to a function that is known to unqueue DPC, and will perform specific operation when the DPC is
actually a PatchGuard one.

The first argument is an index to choose a routine randomly, and this routine will be set as on of these
functions:

Index Routine

0 CmpEnableLazyFlushDpcRoutine

1 ExpCenturyDpcRoutine

2 ExpTimeZoneDpcRoutine

3 ExpTimeRefreshDpcRoutine

4 CmpLazyFlushDpcRoutine

5 ExpTimerDpcRoutine

6 lopTimerDispatch

7 loplrpStackProfilerDpcRoutine

8 KiBalanceSetManagerDeferredRoutine
9 PopThermalZoneDpc

10 KiTimerDispatch OR KiDpcDispatch
11 KiTimerDispatch OR KiDpcDispatch
12 KiTimerDispatch OR KiDpcDispatch

For the last routines KiTimerDispatch and KiDpcDispatch, if the second argument is less than 3 then
KiTimerDispatch is used, otherwise (greater or equal than 3) KiDpcDispatch is used. This choice is made at
0x1408A50CA.

As one can see in the previous pseudo code of KiFilterFiberContext, this first parameter is chosen randomly
except for the last call to KilnitPatchGuardContext where it is O - CmpEnableLazyFlushDpcRoutine, but we will
see that in this case it isn't used by the initialization routine. The switch between these 12 routines can be
seen near Ox1408A5AA9.

*  Argument 3: Random value to determine the total size of data to check
This random value can be one or two (as one can see in KiFilterFiberContext). It is used to divide the
hardcoded value 0x140000 and the result is immediatly set into the PatchGuard context structure at offset
Ox6cc. This value is used to determine the maximum size of data (in bytes) to checksum at each PatchGuard
check. The main idea is that PatchGuard use a list of structures to check the integrity and after each checksum
a counter is incremented by the size of the data. While the total amount of checked data is less than the
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maximum previously defined, PatchGuard proceeds with the next structure to check in its list. This mechanism
will be explained more in detail in the Verification Routine section.

* Argument 5: Boolean for ntosrknl functions integrity check
This argument is a boolean to decide whether or not ntoskrnl functions checksum should be performed. The
check is done at 140894183:

mov eax, [rsp+2238h+arg_20_var_2140]

and eax, ri3d; ri3 is hardcoded to 1
mov dword ptr [rsp+2238h+arg20_copy_var_2170], eax

jz loc_1408943C4

The checksum result is then stored in the PatchGuard context as every other Windows Kernel structures that
are to be checked by PatchGuard. In KiFilterFiberParam, one can see that this parameter is True only for the
first call to KilnitPatchGuardContext.

This end the initialization methods that may come from KilnitPatchGuardContext, now we will describe
other methods initialized directly, or doesn’t use any context structure at all.

b - « TV » callback, first time linking PatchGuard to mssecflt.sys

KiFilterFiberContext is a rather small function and we can easily see the notification of a callback. This callback
cannot be found in ntoskrnl, but we can see that it takes a function pointer (sub_1401825A0, renamed
Pg_TVCallback_CheckRoutine_sub_1401825A0) as an argument. It could be rather difficult to find where it
comes from. From the KiFilterFiberContext function we notice that there is no call to ExRegisterCallback,
which means that the object callback already exists and has been created previously during the boot. With
timeless analysis we instantly discover that this callback is initialized in the binary mssecflt.sys in the function
SeclnitializeKernellntegrityCheck:
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Oxfffff203c95043d3 85 c0@
oxfffffen3cos04zds of 88 a9 00 00 0O

test eax, eax
js oxfffffs03co504484 ($+0xaf)

# 701951 448 ---- ObCreateobjectEx+0xfb - ntoskrnl.exe

Oxfffff203c95042db 39 2d 2f ac f6 f cmp dword ptr [rip - 0x853dl], ebp
Oxffff203c05043e1 48 8b 9c 24 90 00 00 0O mov rbx, gword ptr [rsp + 0x00]
oxfffffeo3co5042:0 af 85 7f ba 19 00 jne oxfffffe03co69fe6e ($+0x19bass)

# 701951 451 ---- ObCreateobjectEx+0x10f - ntoskrnl.exe

Oxfffff203co5042e1 48 8b 84 24 b0 00 00 0O nov rax, gword ptr [rsp + Oxb0]
Oxffff803c05043f7 48 8d 4b 30 lea rex, [rbx + 0x30]
oxfffffe03cos5043fh 48 B9 08 nov qword ptr [rax], rcx
Oxfffffeo3cos5043fe 8b 7 nov eax, edi
Oxfffffeo3cos504400 4c 8d Sc 24 50 lea rll, [rsp + x50
Oxfffffe03co504405 49 8b Sb 20 mov rbx, gword ptr [rll + 0x20
Oxfffffe03c0504400 49 8b 6b 28 mov rbp, gword ptr [rll + 0x28
oxfffffeo3cos0440d 49 8b 73 30 mov rsi, gword ptr [rll + 0x30]
Oxfffffe03c9504411 49 8b 7b 38 nov rdi, gword ptr [rll + 0x38
OxfffffeO3co504415 49 8b e3 mov rsp, rll
Oxfffffe03co504418 41 5f pop rls
oxfffffeo3co50441a 41 Se pop rl4
oxfffffeo3co50441c 41 Sc pop rlz
oxfffffeo3c95044le c3 ret
# 701 951 465 ---- +0x132 - ntoskrnl.exe
oxfffffe03co54ac4z 8b d8 nov ebx, eax
Oxfffffe03c954ac44 85 cO test eax, eax
Oxfffffe03cosdacds 78 a6 js Oxfffffs03c9Sdabes (§-0x58)
# 701 951 468 ---- +0x138 - ntoskrnl.exe
Oxfffffe03c954acds 48 8b 5d f7 mov rbx, gword ptr [rbp - 9

c7 03 43 6l 6c 6c nov dword ptr [rbx], OxGc6ce143
Oxfffffe03c954ac52 48 8d 43 10 lea rax, [rbx + 0x10
Oxfffff203c054ac5E 44 88 63 20 nov byte ptr [rbx + 0x20], rl2b
oxfffffe03co54acSa 48 89 40 08 nov qword ptr [rax + B8], rax
oxfffffanicrandacse 48 89 00 mov aword otr lrax], rax
Oxfi 7 i rbx + 8], ©
ot From memory history, time e
ot ( 2 ) travelling back to the last write ox1a7a%e)

B [ e -Oxdeae?
ot access, in ExCreateCallback coeTesd (§-Drdzasan)
# 701951 479 ---- ExﬁcqullePushLockExclu51veEx - ntoskrnl.exe
oxfffffan3consfeso 48 89 74 2 mov qword ptr [rsp + 0x20], rsi
oxfffffeo3co05fess 57 push rdi
Oxfffffeo3co05fess 48 83 ec 30 sub rsp, 0x30
Oxfffffe03c905fe5a 33 ff xor edil, edi
Oxfffff203co05feSc 48 8b f1 mov rsi, rcx
oxfffffenzcoosfest 7 c2 fe ff ff ff test edx, oxfffffffc
oxfffffeo3coosfess of 85 45 25 18 00 jne Oxfffffe03cole23b0 ($+0x18254h)
# 701951 486 ---- ExAcquirePushLockExclusiveEx+0x1b - ntoskrnl.exe

Oxfffff203c005Tesh 48 89 5c 24 40
oxfffffeo3co0sfe7o f6 c2 02
oxfffffeo3coosfers of 85 d8 00 00 0O

nov gword ptr [rsp + 0x48], rbx
test dl, 2
jne Oxfffffa03co05ff5l ($+0xde)

# 701951 489 ---- ExAcquirePushLockExclusiveEx+0x29 - ntoskrnl.exe
Oxfffffan3co05fe72 89 7c 24 48 mov dword ptr [rsp + 0x48], edi

oxfffffeo3co05fe7d 65 48 8b 1c 25 88 01 00 0O mov rbx, gword ptr gs:[0x188]

oxfffffeo3coosfess 66 ff 8b e6 01 00 0O dec word ptr [rbx + Oxles]
oxfffffeo3coosfesd fe 83 la 03 00 00 inc byte ptr [rbx + 0x21a)
Oxfffff203c0057eS 80 bb la 03 00 00 01 cmp byte ptr [rbx + 0x31al, 1
oxfffffeo3coosfesa of 85 28 25 18 00 jne oxfffffe03cole23c8 ($+0x18252¢)
# 701951 485 ---- ExAcquirePushLockExclusiveEx+0x50 - ntoskrnl.exe

Oxfffffe03co05fean af b6 83 18 03 00 00 movzx eax, byte ptr [rbx + 0x318]
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only medified
Re Before After e
9 #701951489 #701951469

rax 0x0 0x0
rbx oxffffas083023f130 oxffffas083023f130
rcx Oxffffas083023f130 Oxffffas083023f130
rdx oxc oxc
rsi Oxffffas083027b440 Oxffffas083027b440 +
Backtrace [(=]ES]
KiDispatchinterrupt+ 0x2f = KilnterruptDispatchMNolLockMNoEtw+ Ox...
Depth Caller # Called Binary Called Symbol e
11 #701947716 ntoskrnl.exe  ExCreateCallback
10 #701947702 mssecflt.sys  SecinitializekernelintegrityCheck
] #701257238 mssecflt.sys  DriverEntry
8 #701257214 ntoskrnl.exe | _guard_dispatch_icall
7 #701102949 ntoskrnl.exe  loplinitializeBuiltinDriver
[ #701101862 ntoskrnl.exe | PnplnitializeBootStartDriver

Finding
3 )mssecﬂt! SeclnitializeKernelIntegrityCheck
as origin from Backtrace

LRI L EAT I I SES L L S D

["call]

2 #524223809 ntoskrnl.exe  lolnitSystemPreDrivers
1 #524223807 ntoskrnlexe  lolnitSystem
-
Hex dump @ds: 0xffffaS083023f130 (2 )
Grouping: | QWord ~ | values: () Before (e After Options,
Offset 0 8
Oxffffas083023F13 0000050036314d43 Call, ., . CMLG. . ..

Oxfff 250830237140 0E000EEEE0001000 fffbe841b3dsoon

(1)

Transition Type

OxFFFF Selecting memory argument to
ExNotifyCallback and displaying

Memory History

OxFFFF

OxFfee

Start address Size

[
¥| Show access history of selection
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The callback function is named SecKernellntegrityCallback. It is initialized in SeclInitializeKernellntegrityCheck
which is called directly from the driver entry routine of mssecflt.sys. Here is the call stack (that you can also
see in the screenshot above) for SeclnitializeKernellntegrityCheck, which shows that it comes from the
lolnitSystem function:

SecInitializeKernelIntegrityCheck
mssecflt.sys DriverEntry
_guard_dispatch_icall
IopInitializeBuiltinDriver
PnpInitializeBootStartDriver
PipInitializeCoreDriversByGroup
PipInitializeCoreDriversAndElam
IopInitializeBootDrivers
IoInitSystemPreDrivers
IoInitSystem

The callback function itself is SecKernellntegrityCallback. It is a very small routine that simply put the function
pointer into a global variable:

[...] // Tracing and Logging related actions

g_qword_1C0013428 = &Pg_TVCallback_CheckRoutine_sub_1401825A0; // Pointer from the notification
// function argument

*KpgApiConsumerRanges = SecProtectedRanges;

We can also see that it will set the value of the global variable KpgApiConsumerRanges (passed as parameter)
to SecProtectedRanges.

Having a quick look at Pg_TVCallback_CheckRoutine_sub_1401825A0 indicates that it is one of the
PatchGuard check routine, as it look very much like FsRtIMdlReadCompleteDevEx. A difference can be noted
though: the scheduling method isn't reset at the end of the routine.

There is no specific initialization more than this callback for this method, as, as we mentionned earlier, it uses
the global PatchGuard context structure. How this function is called is detailed later in this article.

¢ - KiSwinterruptDispatch

Just like the callback method, this method isn't initialized per se, as it uses the global PatchGuard context
structure from method 7. It is also a new method and is called by KiSwinterrupt function, which is an IDT
function. We will describe its trigger mechanism later in this paper. We can see some references to
KiSwinterrupt in KiFilterFiberContext, that are related.

d - Some breadcrumbs: CclnitializeBcbProfiler

PatchGuard uses an hidden way to perform checks with CclnitializeBcbProfiler. This function starts by
computing the checksum of a random ntoskrnl routine. Then it sets up a DPC with the routine CcBcbProfiler,
and with some bonus data in the DPC. Here is the structure passed as parameter:

struct pg_CcInitializeBcbProfiler

KDPC_ kdpc;

KTIMER timer;

ULONG64 res_RtlpLookupPrimaryFunctionEntry_0x80; // 0D1B71759
ULONG64 hardcoded_140000000h_0x88;

ULONG32 func_size_0x90;

ULONG32 padding_0x94;

ULONG64 checksum_function_0x98;

ULONG64 random_1_0xa0;
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ULONG32 random_2_0xa8;
ULONG32 bool_CcBcbProfiler_or_sub_140499010_0xac;

ULONG64 bKiAreCodePatchesAllowed_0xb0;

struct _LIST_ENTRY_ workitem_List_0xb8;

void* workitem_WorkerRoutine_psub_140499010_0xc8 /* function */;
void* workitem_Parameter_pCurrentStruct_0xdo;

3

Note that this structure contains everything to compute again the checksum of the random routine:
* Pointer to the Function entry
* Base address of the image (added to the RVA to get the VA)
*  Size of the function
*  Checksum
* Random values used at seed for the checksum

The DPC is queued with KeSetCoalescableTimer, like in the initialization function with a DueTime set between
2" and 2'10". Next, routine CcBcbProfiler either queue the workitem from the parameter with
sub_1404099010 (that we convieniently rename Pg_CcBcbProfilerTwin_sub_140499010) as WorkerRoutine,
or continue its execution.

Except for the Workltem part, routines Pg_CcBcbProfilerTwin_sub_1404099010 and CcBcbProfiler are
almost identical, and the main objective is to perform the integrity check of the random ntoskrnl function and
compare the result with the one stored in the structure. Both functions sets up again the timer with
KeSetCoalescableTimer afterwards.

e - Some breadcrumbs: PspProcessDelete

Some pieces of integrity verification can also be found in specific places, such as PspProcessDelete. This
function does more than just deleting a process as in the middle of it, an integrity check will be performed on
the KeServiceDescriptorTable and its shadow twin KeServiceDescriptorTableShadow.

This integrity check is independant, as it doesn’t need any PatchGuard context structure or dedicated thread. It
is just a small piece of verification that one can find in the middle of system code. Note that the original
checksum for both table, along with the Initialization Vector and the shift value necessary to compute the
checksum, are available in global variable, in a way that if an attacker wants to patch an entry of the Descriptor
Table (Shadow or not), then computing again the checksum and replacing the original one is completely
feasible.

This checksum occurs regarding a random value generated at 0x1401ecd55, with
KiQueryUnbiaisedInterruptTime, so that it is not launched too many times (The interval hasn’t been reversed
yet but we can see that the result is computed with an addition of 288e9 and a random value). This timer is
stored at 0x1403DB100. The checksum results for these structures are stored at 0x1403DB108,
0x1403DB110 and 0x1403DB118. The IV is stored at 0x1403DBOFO and the shift value is stored at
0x1403DBOF8. If one of these checksum fails, then a KeBugCheck is triggered through a Dpc inserted with
KiSchedulerDpc.

The initialization of these checksums is performed in CmplnitDelayRefKCBEngine.

To disable this method, one can just patch the timer to infinity or compute again the checksum of the modified
table (and get its hook protected by PatchGuard, which is nice).
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f - Some breadcrumbs: KilnitializeUserApc

Just like PspProcessDelete, this function hide an autonomous piece of code to check the integrity for the IDT.
The timer to define whether or not a check should be performed is stored at 0x1403DB1CO, the IV at
0x1403DB1BO0 and the shift value at 0x1403DB1BO0. The original checksum is stored at 0x1403DB1B8.
Identically, if a modification is detected, the code inject a DPC with KiSchedulerDpc which will call
KeBugCheck.

Just like the PspProcessDelete case, to disable this method, one can just set the timer to infinity or compute
again the checksum of the modified IDT (and get its hook protected by PatchGuard, which is nice).

g - Other call to KilnitPatchGuardContext

An other call to KilnitPatchGuardContext can be seen with cross-references, from the exception handler of
KiVerifyXcpt15. This routine belong to an array of function pointers named KiVerifyXcptRoutines, it is called
multiple times (defined by the constant KiVerifyPass, OxA) in KiVerifyScopesExecute.

This method hasn’t been analyzed much yet, but the thing is that KilnitPatchGuardContext so that method 0 is
used to create a context (the timer injected with KeSetCoalescableTimer), so no new method to disable.
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lll - Triggering a check

We have seen previously multiple methods used to setup some contexts, now this section concerns how
these contexts are triggered. Depending on each methods, the process may vary.

A - DPC execution

The most famous way for PatchGuard to trigger a check is to use DPC. The routine set as DeferredRoutine are
picked among the following:

0 CmpEnablelLazyFlushDpcRoutine
ExpCenturyDpcRoutine
ExpTimeZoneDpcRoutine
ExpTimeRefreshDpcRoutine
CmpLazyFlushDpcRoutine
ExpTimerDpcRoutine
lopTimerDispatch
loplrpStackProfilerDpcRoutine
KiBalanceSetManagerDeferredRoutine
PopThermalZoneDpc
KiTimerDispatch OR KiDpcDispatch
KiTimerDispatch OR KiDpcDispatch
KiTimerDispatch OR KiDpcDispatch

O 0o dJd o Ul dh WN B

P
N = O

From index O to 9, functions use an exception handler to fire the check. KiTimerDispatch and KiDpcDispatch
call the DPC directly without using the exception trick. Also, note that method 5 uses
KiBalanceSetManagerDeferredRoutine all the time.

1 - Non-Canonical DeferredContext pointer

When one of these functions is called, the first objective is to determine whether or not the DPC stacked is a
PatchGuard DPC or a usual DPC, as these functions have a nominal usage. All of these function take a DPC
structure pointer as parameter and it will be used to determine if the DPC comes from PatchGuard or not.

The check is done regarding the argument KDPC.DeferredContext, whether it has a canonical address or not.

(Namely, whether or not the pointer start with Oxffffxxxxxxxxxxxx or not) This check is rather simple. Here is a
simple snippet of code that can be used to check if a DeferredContext has a canonical address:
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is_patchguard_context PROC
mov rdx, rcx
sar rdx, 2fh
inc rdx
cmp rdx, 1
jbe ctx_is_not_patchguard
mov rax, 1 ; patchguard
ret
ctx_is_not_patchguard:
xor rax, rax
ret
is_patchguard_context ENDP

If the aforementionned DeferredContext parameter has a non-canonical address, then the function
KiCustomAccessRoutineX (X depending on the function called) is called, to lead to what we may call « the
russian roulette trick.

2 - Triggering the exception handler: The Russian roulette trick

KiCustomAccessRoutineX will then call KiCustomRecurseRoutineX with two parameters: a counter and the
non-canonical DeferredContext. The counter is obtained from the last two bits from the deferred context, plus
one.

KiCustomRecurseRoutineX is a set of 10 circular function doing a simple task: Decrementing the counter and
while it's different from zero, call the next function. Here is a diagram that illustrate this mechanism:

count = random(10)

KiCustomAccessRoutine2(count) KiCustomRecurseRoutineN :
if (--count == 0)
deref_invalid_pointer()
[:§§>7 else
KiCustomRecurseRoutineN+1

KiCustomRecurseRoutinezEiigj
L(/A] if (--count == 0)

deref_invalid_pointer()

KiCustomRecurseRoutinel KiCustomRecurseRoutine3
{T 000
KiCustomRecurseRoutine® KiCustomRecurseRoutine8

N

KiCustomRecurseRoutine9

The idea is that until the counter is zero, PatchGuard will keep decrementing it and eventually, an invalid
pointer will be dereferenced. Depending of each original function, a combination of try/except/finally handler
will eventually lead to the decryption of the PatchGuard context structure. This mechanism looks like pulling
the trigger of a gun with one bullet until it shoot, hence the « Russian roulette » comparison.
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3 - PatchGuard context decryption

The exception handler is responsible for decrypting the first layer of the PatchGuard context structure. There

are roughly two layer of decryption, and one small trick. Here is an overly simplified diagram of each layer,

followed by the explanation of each part:

First layer decrypt
the entire structure

First layer « and a
half » overwrite the
header with hardcoded

Second layer, as self
modifying code, decrypt

the rest of the

values structure
cceccece cceeecce xor @, key Xor @6, key
or @8, key xor @8, key
‘ ‘ ‘ Cleartext
context
structure
a - First layer
The first layer of decryption targets the whole context structure.
There are multiple different code to do so which is summarized in the following list:
Idx Routine 1st layer encryption
0 CmpEnableLazyFlushDpcRoutine Method 1
1 ExpCenturyDpcRoutine Method 1
2 ExpTimeZoneDpcRoutine Method 1
3 ExpTimeRefreshDpcRoutine Method 2
4 CmpEnableLazyFlushDpcRoutine Method 1
5 ExpTimerDpcRoutine Method 2
6 lopTimerDispatch Method 2
7 loplrpStackProfilerDpcRoutine Method 1
8 KiBalanceSetManagerDeferredRoutine Method 1
9 PopThermalZoneDpc Method 2
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10-12 KiTimerDispatch Method 1 with hardcoded key?
10-12 KiDpcDispatch No 1st layer encryption

These encryption/decryption routines use random values from KiWaitNever and KiWaitAlways. KiWaitNever
and KiWaitAlways are two global variables holding random values, generated at boot time and used by
KilnitPatchGuardContext to encrypt the PatchGuard context structure. This is interesting because it means
that an attacker that want to interact with the structure must know the position of these global variables and
to do so, must have both the ntoskrnl version and corresponding symbols information.

b - First layer... and a half

Before applying the second layer of decryption, PatchGuard rewrite four bytes at the very beginning of the
PatchGuard structure. These bytes actually represent the code that will decrypt the context through the third
layer of decryption (CmdAppendDUSection), as self modifying code. This rewrite is done using hard coded
values, and for each routine the code is different. Just to give you an idea, here are a few methods used.

- ExpCenturyDpcRoutine rewrites four bytes one by one:

mov byte ptr [ri11], 2Eh

mov byte ptr [ri1+1], 48h

mov byte ptr [ri1+2], 31h

mov byte ptr [r11+3], 11h ; pg_ctx PROLOGUE

- PopThermalZoneDpc uses the xor of two hardcoded values:
*pg_ctx = OXOAD1B6FF5 N OXOBC2A27DB ; = 0x1131482E

- ExpTimeZoneDpcRoutine rewrites directly a DWORD32 and rotate it after:

mov gword ptr [rbp+38h], 31482Eil1lh
mov rdx, [rbp+38h]

shl edx, 18h

mov rcx, [rbp+38h]

shr rcx, 8

or rcx, rdx

mov [rbp+38h], rcx ; 0x1131482E

At this point there is no assumption about why it is done this way. The usage of XOR is typical of Just-In-Time
code, and since the code around is not very clear this is a possibility. Otherwise, these "tricks" were introduced
volontarely to prevent some magic values to be searchable in the code, but it doesn't sound like something
difficult to overcome.

c - Second and last layer

The code for the second layer of decryption is actually held in the first part of the PatchGuard context, and it
is called directly at the end of the previous decryption layer called. Recall that this code is copied directly from
CmdAppendDllSection, and start by multiple xor instructions to decrypt itself. We can separate this decryption
process in two parts:
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Here is a snippet of the trace for the first part that we can see with timeless analysis as it rewrites its own
instruction (as seen with REVEN):

// rcx points to Oxffffce80c3f00058, which is the current instruction
Oxffffce80c3fOOO58 2e 48 31 11 xor gword ptr cs:[rcx], rdx
Oxffffce80c3fOOO5c 48 31 51 08 xor gword ptr [rcx + 8], rdx
Oxffffce80c3fEEE60 48 31 51 10 xor gword ptr [rcx + 0x10], rdx
oxffffce80c3f0OO64 48 31 51 18 xor gword ptr [rcx + 0x18], rdx
Oxffffce80c3f0OO68 48 31 51 20 xor gword ptr [rcx + 0x20], rdx
[oool

The first xor instruction here rewrite both itself and decrypt the very next instruction.
The second part is the decryption loop for the whole context structure (as seen with REVEN):

oxffffces80c3fooad? xor gword ptr [rdx + rcx*8 + 0xc0], rax
Oxffffce80c3fOOOdT ror rax, cl

Oxffffce80c3f0O0e2 btc rax, rax

oxffffce80c3fOO00e6 loop oxffffce80c3fO00d7

4 - Passing control to the verification routine

Once this decryption is over, the context structure is ready to use. Two functions are called one after another.

The first one is called directly from the data in the structure (see previously, the second part of the structure).
It is a copy of sub_1402F5270, and do two things:
*  Verify the PatchGuard context structure integrity and the integrity of 47 routines or parts of routines
that are critical to PatchGuard. For example, the first code to be checked is the epilogue of
ExpWorkerThread calling KeBugCheck?2 at Ox1401FAFF8:

or [rsp+38h+var_18], OFFFFFFFFFFFFFFFFh
mov r9, rbx ; BugCheckParameter3
mov rg, rdi ; BugCheckParameter2
mov edx, 5 ; BugCheckParameteril
mov ecx, OE4h ; BugCheckCode

call KeBugCheckEx

The second check is the exception handler of ExpWorkerThread (unwind), and the last check is
KelpiGenericCall.

If PatchGuard detects a modification then it will enter the process to trigger the KeBugCheck. We will
describe shortly after the main algorithm used to check the integrity and the process of triggering
KeBugCheck.

* Initialize a WORK_QUEUE_ITEM structure (see 0x1402F5BE1). The WorkerRoutine is picked out of
three stub that will call a verification routine as a Workltem. The three stubs are:
©  Arandom stub picked from KiMachineCheckControl array, if the seventh method is used (already
described previously). In this case the field Parameter points to the PatchGuard context;
© The copy of FsRtlUninitializeSmallMcb in the PatchGuard context structure. In this case the
Parameter is also the PatchGuard context
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© sub_1401812EO0, which is only a stub to call the deferred routine from a DPC passed as a
parameter. In this case the DPC parameter is setup to be slightly encrypted and is also a pointer
to KiMachineCheckControl. The associated field Parameter is the aforementionned DPC.

Note that the condition checked to decide if the third stub has to be chosen isn't clear at the moment.

It checks the presence of an unknown struct at offset 0x8a0 in the context structure.

The second call is actually a jump, to ExQueueWorkltem. Obviously, the previously initialized
WORK_QUEUE_ITEM is passed as parameter and the verification routine can start once a Worker thread
process the new item.

For the DPC method, this conclude the mechanism that is used to pass control to the verification routine. The
other method that we will describe hereafter are mostly subset of this mechanism.

B - System Thread method

As we described before, the third method used by PatchGuard creates a system thread in function
Pg_InitMethod3SystemThread. This function is called directly in KilnitPatchGuardContext.

1 - Triggering the Exception Handler
PsCreateSystemThread is called through the exception handler of Pg_InitMethod3SystemThread.

For this case we saw a piece of code that we don't really understand:
At 0x1408940ES8 in KilnitPatchGuardContext, the instruction CPUID is called:

mov eax, 80000008h ; Virtual and physical address sizes
cpuid

This will returns the largest virtual and physical address sizes. The result is stored in the PatchGuard context at
offset 0x7b8 and used in Pg_InitMethod3SystemThread:

; __try { ;__except at loc_1408A982B

[...]

mov al, byte ptr [rsi+pg_ctx_rs4.max_virt_address_size 0x7b8]
dec al ; Ox40 => Ox3f

movzx riid, al ; ri11 = Ox3f

mov ebx, 3Fh

sub ebx, riid ; rbx = 0

[...]

div rbx ; May trigger the error

If the maximum virtual address size is 0x40, then rbx is O at the division instruction, and will trigger the
exception. This is very unusual since x86_64 only use 0x30 bits to address the virtual memory so we don't
really know why this is placed here.
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It seems that the actual fault is triggered a few instruction later when dereferrencing a "random" register near
0x1408A97DD.

This part is not very clear to us, at it is very difficult to record and debug this mechanism. It may lack some
information or may be wrong...

2 - New Thread

The thread is then created at 0x1408A9837. Recall that the structure KI_FILTER_FIBER_PARAM contains a
pointer to PsCreateSystemThread; this pointer is used by PatchGuard to create the new thread. The
StartContext parameter given to PsCreateSystemThread is a pointer to a new type of structure which can be
defined as follow:

struct pg_StartContext
{
ULONG64 pEvent_0x00; Just a pointer to the event in the very
; same structure
ULONG64 bRandom_ShouldRunKeRundownApcQueues_0x08; set at 0x1408A970B
ULONG64 unknown_0x10;
KEVENT_ event_0x18;
}

The event object is initialized before the exception handler in the function Pg_InitMethod3SystemThread and
one of the first thing the newly created thread does in Pg_Method3StubToCheckRoutine_sub_1402CD680 is
waiting on this object to be signaled, with KeWaitForSingleObject. This event is notified at the end of the
KilnitPatchGuardContext, so almost right after being initialized. Note that there is no timeout (set to 0) for the
first time this method is used.

Function Pg_InitMethod3SystemThread returns a pointer to the structure and the event is notified at the end
of KilnitPatchGuardContext at 0x1408A8CA7. Then the whole decryption and check process may start.

3 - Decryption process

The decryption process is basically the same as the one used by DPCs: a two stages decryption with an
additional hard-coded prologue. The first stage uses KiWaitNever and KiWaitAlways and the second stage is
performed by CmpAppendDUSection's copy, just like in the DPC case, which eventually calls the verification
routine.

4 - Post verification for this case only

Once the verification routine ended, the context is restored to a waiting state with either
KeDelayExecutionThread or KeWaitForSingleObject, but this time with a timeout set between 2' and 2'10".
This is important because when looking for PatchGuard threads in the disabling driver, this is the kind of
places we have to look into.
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C - APC insertion

As explained in the first part, the fourth method insert an APC in a system thread queue. Especially, the system
thread must have, as a StartAddress (entry in the ETHREAD structure) a pointer to PoplrpWorkerControl.

The KernelRoutine parameter given to KilnsertQueueApc is KiDispatchCallout.

Just like DPC and system thread method, it uses a two stage decryption routine and rewrite the first part of
the context with an hard coded xor value. This method is quite immediate since APC delivery is fast, but for
each of the previous methods a wait is performed in the verification to ensure that a minimum amount of time
has elapsed, between 2" and 2'10".

D - Global variable call

Recall that KiFilterFiberContext notify a callback, that itself places a pointer to the check routine
Pg_TVCallback_CheckRoutine_sub_1401825A0 in a global variable from mssecflt.sys. This method uses the
global PatchGuard context structure, initialized by KilnitPatchGuardContext when the second argument is 7.
The fact that this global PatchGuard structure is in cleartext in memory imply that there is no need to decrypt
and hide the decryption process for this method. This method therefore calls directly the check routine.
Hereafter is an analysis of conditions that are used to trigger a check.

Statically, we only find one reference that will call the function pointer stored in the global variable, in the
function SecKernellntegrityCheck.

The check routine can be called up to five times until the returned status differs from
STATUS_MORE_PROCESSING_REQUIRED. Here is the pseudo code responsible for the call:

i=0
while i < 5:
if(Pg_TVCallback_CheckRoutine_sub_1401825A0() != STATUS_MORE_PROCESSING_REQUIRED):
break
i++

By analyzing cross-references to this function we find that it may be called from several path. We can sort out
two main possibilities for a call:
*  The first one is from SecDetlnitializeTimers. This path may come from the SecMessage (called by
SecCreatePort) and SecDetlnitialize;
* The second one is from SetGetProcessContextWithAssertion, which is the most interesting as it may
be called from many callback functions such as:
SecPreCleanup, SecSendFileDeleteEvent, SecSendFileModifyEvent, SecPreWrite, SecPostCreate,
SecPostSetInfo, SecRegisterRegCallback, RegPostRenameKey, SecObHandleOpenProcessCallback,
and so on.

For example, the path for SecSendFileModifyEvent is the following:

SecSendFileModifyEvent
if (EtwEventEnabled(Microsoft_Windows_SECHandle, Event 7))
SecSendFileModifyOrDeleteEvent
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SecGetProcessContextWithAssertions
SecDetPerformImmediateAssertions
SecKernelIntegrityImmediateCheck
SecQueueIntegrityCheck
SecDeferredIntegrityCheck // as inserted APC
SecKernelIntegrityCheck
Pg_TVCallback CheckRoutine_sub_1401825A0();qgword _1C0013428

The call to Pg_TVCallback_CheckRoutine_sub_1401825A0 has nothing special like the other methods. It goes
almost straightforward to checks and we will see later that the code responsible for modifying the behaviour
of PatchGuard regarding the method isn't present in this version of the check routine.

E - KiSwinterruptDispatch method

Just like the method from the global variable, this method uses the global PatchGuard context structure,
which is in cleartext. This means that there is no decryption process and the verification routine is called
directly at some point in KiSwinterrupt.

F - Breadcrumbs

Breadcrumbs methods are quite special as they work by themselve. They don't use specific code to trigger
their checks, but as we've seen before, they are not executed all of the time. For the CclnitializeBcbProfiler, as
we described either queue a workitem with the twin function or continue its own execution. And for the two
other piece of verification code from PspProcessDelete and KilnitializeUserApc, both of these function don’t
rely on any specific mechanism other than a timer (not the structure TIMER, just a counter of time) stored in a
global variable.
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IV - Verification routines

Even though the historical and main verification routine is FsRtIMdlReadCompleteDevEx, we showed
previously that other ones exists depending on the triggering method used. Here is a brief overview of these
functions:

*  FsRtIMdIReadCompleteDevEx: The historical verification routine. One of the biggest routine in
ntoskrnl (more than 12ko in Windows 10 RS4), this function is used by most methods from
KiFilterFiberContext. As such, it includes the code to verify kernel structures but also the code to
handle different triggering methods, e.g. to specifically schedule again the next check.

* Pg_TVCallback_CheckRoutine_sub_1401825A0: This function looks very much like
FsRtIMdIReadCompleteDevEx. We showed previously that it was called from a global variable set up
from KiFilterFiberContext. Because there is no specific method to call this function (we saw that it
was related to Security Events in mssecflt.sys), there is no specific code to handle method and no
need to settle back the next check context.

*  CcBcbProfiler/Pg_CcBcbProfilerTwin_sub_140499010: We saw that these two routines are used
only to check a randomly choosen routine from ntoskrnl

This section will mainly describe FsRtIMdlReadCompleteDevEx. As a matter of fact,
Pg_TVCallback_CheckRoutine_sub_1401825A0 looks very much like a subset of it, and the couple
CcBcbProfiler/s Pg_CcBcbProfilerTwin_sub_140499010 are quite small and we already provided an overview
of their functionnalities.

FsRtlIMdlReadCompleteDevEx can be summed up into multiple parts:
1. Prologue
2. Check of structures
3. Epilogue (two possible outcomes)

A - Prologue

Following sections are placed sequentially regarding the flow of execution that we carefully followed with
REVEN and Timeless Analysis.
To summarize, here are the main steps that will be described:

Checksum the pg_ctx part 1, 2 and 3, with comparison
Re-Encrypt part 1

Checksum of part 2 and 3, to save

Wait

Decrypt back part 1

Checksum of part 2 and 3, with comparison

Checksum of part 1 (0x618 bytes), with comparison
Set the affinity thread

© N Uk WwWNE
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1 - Checksum the pg_ctx part 1, 2 and 3, with comparison

At this point the full PatchGuard context structure is in plain text in memory. PatchGuard proceeds to check
the integrity of the whole structure and compare the result with the one stored before the context decryption,
initialized in KilnitPatchGuardContext.

Before this checksum is performed, variable data is saved on the stack and cleared from the structure so the
checksum remains the same. It will be restored afterwards. This includes values like the checksum of the
context (obviously, collision in the hash algorithm aren't in the scope of PatchGuard ) ), or structures like the
Workltem.

2 - Re-Encrypt part 1

Because PatchGuard shouldn't let its context in plain-text in memory, it proceeds to re-encrypt its first part. At
this point I'm not sure why the rest of if isn't encrypted back.

3 - Checksum of part 2 and 3

PatchGuard perform another checksum, of part 2 and 3 from the context. Recall that these parts contain the
full code of some nt routines, along with an array containing information for each critical structure to be
verified later.

These part won't be re-encrypted by PatchGuard before the wait.

4 - Wait

The wait (sleep) ensure that at least two minutes have elapsed between two checks. It can be performed with
three different methods:

* Unamed function sub_140182390, (named SelfEncryptWaitAndDecrypt in literature)

*  KeWaitForSingleObject

* KeDelayExecutionThread

For example, we can easily see with REVEN the method used by the wait before re-decrypting the structure:
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- mov
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eax, rldd
oxfffffen2cdsdelsf

ntoskrnl.exe

rbx, OWORD PTR [rsp +

rsp,
rls
rl4
rl3
rlz
rdi
rsi
rb
® Endof sleep
Oxffffadobdzb66e3s
eax, eax
rizd, rlad
rl3, OWORD PTR [rsp + 0x1130]
Oxffffadobd2l 58
ré, rbx
rax, [rl3 + o
rg, rl3
ecx, Oxlla .
rizd, 1 Decryption key
QWORD PTR [rax].
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Hex dump @ds: OxffffadObd2bs4094

Grouping: | Byte =
Offset
oxffffadobd2bsa0se 20 64 AQ 37ID5
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The choice of which routine to use is done regarding information contained in the context, from

KilnitPatchGuardContext.
*  For SelfEncryptWaitAndDecrypt it is a boolean at offset 0x8f8 in the PatchGuard context structure,

initially set at 0x1408948DE. If this boolean is not set then PatchGuard check for an object that can

come from 0x5d0 or Ox890.

* At offset 0x890, it may be an Event object (initialized at 0x140895AF4) or a Timer initialized at

0x140895B12. At Ox5d0 it is a global variable event, which is named in ntoskrnl:
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KiStackProtectNotifyEvent. This event is picked regarding the first bit of the flag at offset Ox82c.
* If none of these objects are picked by PatchGuard then a classical timer is set with

KeDelayExecutionThread.

Each of these function are called with a Timeout or DueTime, set between 2' and 2'10". The

KeWaitForSingleObject is specific as it can immediatly return since the object may already have been signaled.
This might be the case if the object is a Timer object (initialized and set in KilnitPatchGuardContext between 2'
and 2'10"), or the global event KiStackProtectNotifyEvent, which may be signaled at 0x140165B44, in

KeBalanceSetManager. On the other hand the Event object initialized in KilnitPatchGuardContext doesn't seem
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to be signaled at any time but this is not a problem since a timeout is passed as a parameter to
KeWaitForSingleObject.

SelfEncryptWaitAndDecrypt (sub_-140182390), as its name (from Satoshi Tanda) stands for, does more than
just waiting. It adds another layer of encryption, that basically do what the main function does: Re-encrypt the
context, trigger the wait with a KeDelayExecutionThread, then decrypt back the context once the wait is over.

Now, this wait is important because it gives details about where a PatchGuard context may be sleeping at
some point, which is useful to disable it in our driver.

5 - Decrypt back the first part of the context
Once back in the main function, the first part of the context is decrypted back. Nothing to be added here.

6 - Checksum of part 2 and 3, with comparison

To ensure that no modification occured on part 2 and 3 during the wait, a checksum of these part is
performed again and the result is compared to the one obtained before the wait. The original checksum was
previously stored in a register, and pushed/poped on the stack by the wait routine. This mean that it is
probably very difficult to find it and modify it.

7 - Checksum of part 1, with comparison

Last step is the checksum of the first part, but all of it, only the 0x618 first bytes. It is compared to the
original one computed during the context initialization in KilnitPatchGuardContext. This original checksum
result is stored at offset 0x8b8 in the structure.

Note that the first 0x618 bytes of the structure contains the function pointers used by PatchGuard, but no
hashes nor variables.

8 - Setting the Thread Affinity group

Since PatchGuard uses multiple threads and checks some structure that may be processor-specific, this last
part of the prologue define the processor on which the check will run. To do so, it first retrieves the Sessionld
previously set in KilnitPatchGuardContext. Then it will generate a random value between 0 and the total
amount of process on the system. Instead of picking a random PID, PatchGuard prefers to loop and fetch the
n-th process, n being the random value.

Next PatchGuard will attach to this process and fetch its Group Affinity. But it will not directly use it for its
own. It will get a random value between 0 and the amount of processor that may run this thread. In other
words, it will perform an Hamming weigth on the bitmap representing the affinity. Then with the random value
n, it will select the n-th processor (obtained with a loop with KeEnumerateNextProcessor) and set the new
affinity to this processor.

For example, if a thread may run on processor 1, 2 and 6, then PatchGuard will choose a random value 0 <= n
< 3 and set its System affinity to n with KeSetSystemGroupAffinityThread.
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Hereafter is a pseudo code:

rand = random(©, n_processes)
res_process = PsGetNextProcess()
while(rand != 0)

{

}

n_proc = hamming_weight (AffinityMask(res))
PgAffinity = random(@, n_proc)
KeSetSystemGroupAffinityThread(PgAffinity)

res_process = PsGetNextProcess(res_process)

B - Kernel Structure Integrity Checks

In this part we will first present the main algorithm and detail a practical use-case we recorded with timeless
analysis, where we modified the IDT structure and observed the BSOD.

1 - Main algorithm
First recall some entries from the PatchGuard context structure:

* In the third part of the structure is an array of structure holding information necessary for the check,
including a pointer to the data to check, its size, its type and of course the checksum computed during
initialization

* The offset to the first element of this array

¢ The maximum amount of data to be checked for one round of PatchGuard checks

*  Asize counter of currently checked data

* A counter of currently checked data structure

+  etc.

With these information the algorithm sounds pretty clear but lets detail it:

*  First the type of data is used in a small dispatcher. This first dispatcher is actually here to define the
next structure that will be checked after the current one. As a matter of fact, in most case the next
one will be picked but in some case, for example for a type "Ox1c: Driver object corruption” or "Ox1le:
Modification of module padding”, then the next item to analyze is different. This first check is
important because it will decide whether or not it has to perform some preliminary checks or
operations.

* Next the "huge" chunk proceed to verify the integrity of the selected structure. For nominal data area,
this mechanisms is quite simple as PatchGuard proceeds with the checksum and compare it with the

original one, but for more specific structures some preparation may be necessary.

*  Once this verification is done, PatchGuard increments the total amount of data checked and compares
it with the maximum defined. Recall that this maximum depends in KilnitPatchGuardContext from the
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3rd parameter. If the total amount isn’t reached, then PatchGuard proceeds with the next entry in the
array of critical data structures.

Next part detail the example of the IDT check.

2 - Practical use-case: IDT verification with timeless debugging

To check the IDT PatchGuard goes through some preliminary steps. We followed these steps with timeless
analysis. As previously stated PatchGuard starts by dispatching the type of the bugcheck, at 0x1402DFE99.
For the IDT the type is 0x2, and the dispatcher goes to Ox1402E9BSE.

The first part of the check is what we defined previously as « specific » to different structure. Here is the first
dispatcher that can be seen with REVEN when PatchGuard fetch the structure type:

(=58

10800 005162
xffffadohd

e

10800 005 162

10800 065 165
xFtfadobd2

(=%
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e

10800005195 ----
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Since the IDT is processor bound, and pointed to by the idtr register, selecting the right processor is
necessary to control the specific processor that PatchGuard will check. This information is stored in the check
structure (see Il - C - 1 - a - iii) at offset 0x28 for the IDT (initialized at 0x1408a2130). Note that the
information stored in this structure may vary regarding the structure. PatchGuard therefore proceeds to
initialize a KAFFINITY structure with this information and call KeSetSystemGroupAffinityThread to set the
execution of its thread on the selected processor, and call KeGetldtGdt to fetch the idtr and gdtr values.

Then the check is splitted in two part: the first part handle the KxUnexpectedinterrupt functions, and the
second the Interrupt Dispatcher Table itself.

For the first part, which is still considered as « specific » operations, the code fetches the address of
KxUnexpectedInterruptO in the PatchGuard context and iterates on entries (recall that
KxUnexpectedInterruptO is actually an array of functions). For each entry, it disables all external interrupt (set
CR8 to 0xf), then if it matches with the respective KxUnexpectedinterrupt(s) entry, it calls
KiGetInterruptObjectAddress to get the KINTERRUPT object and check if its type is O to proceed with other
checks. CR8 is then restored to its original value, to enable interrupts back.
This check then uses RtlSectionTableFromVirtualAddress to check three things:

*  whether the address belongs to a discardable image (IMAGE_SCN_MEM_DISCARDABLE);

* whether the address belongs to the mapping of ntoskrnl.exe;

* whether it belongs to one of the exported functions of ntoskrnl.exe (using RtlLookupFunctionEntry).

For the second part, PatchGuard simply checksums the table pointed by the IDT register, the same way it does
with most structures. Once the hash computation is over, PatchGuard restores the previous processor affinity
using KeRevertToUserGroupAffinityThread, and compares the obtained hash with the one stored in memory.

C - Epilogue
The epilogue of the check routine can be separated in two part, obviously: the one that happens when a

modification is detected, and the one that happens when everything is fine. To analyze this part we followed
carefully the control flow with REVEN for the IDT case.

1 - Everything's fine, go home and be safe!

After the final hash comparison of a structure, as stated before, if the total amount of data checked is below
the maximum defined in KilnitPatchGuardContext, then PatchGuard proceeds with the next structure from the
array. Otherwise, it will re-arm the PatchGuard context for later use. This goes through multiple steps yet
these aren't really different from the initialization ones.

For methods 0, 1, 2, 4 and 5 the code is almost identical to the one from KilnitPatchGuardContext regarding
the method used:

KeSetCoalescableTimer is called directly
DPC is stored in KPRCB.AcpiReserved
DPC is stored in KPRCB.HalReserved
APC is inserted with KelnsertQueueApc

A wnN e
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5. DPC was already set in a global variable

The third method, which is the creation of a system thread, is rearmed but not in the same main function.
Recall that it is called in Pg_Method3StubToCheckRoutine_sub_1402CD680. Once the verification routine is
done, a small dispatcher choose between KeDelayExecutionThread or KeWaitForSingleObject.

* If KeDelayExecutionThread is chosen, a the usual timeout between 2' and 2'10" is set.

+  If KeWaitForSingleObject is used, the same timeout of 2'is set this time. Recall that the first time it
was called, no timeout was provided, only an event that was notified through KeSetEvent at the end
of KilnitPatchGuardContext for the seventh method. But in this case, with one out of two chance (per
boot), the event is reset and, unless we missed something, will never be set anymore since the
notification occurs in the initialization routine.

For the seventh method, nothing is done at all, the code go straight to the end of the check routine. As we
stated before, this method is cleared right after the beginning of the initialization so we don’t really know what
it does here.

2 - Die you filthy wild patch

Once the checksum is over, for the IDT case PatchGuard first restores the previous affinity for the current
thread. Then the comparison is performed between the computed hash and the original one from
KilnitPatchGuardContext. And if a modification is detected, the BSOD is triggered after some meticulous
actions.

a - Checksum, Encryption and verifications

The first step is related to the PatchGuard context. PatchGuard starts by computing the checksum of the full
structure. To do so, it must first put it in a "common" state where volatile values are cleared or set to specific
state. So PatchGuard proceeds to save values on the stack and clear them from the context. This includes:
*  Checksum of the full context structure (part 1,2,3) at offset 0x658 which is zeroed
* Total size of checked data at offset 0x6c8, which is set to the size of the first part of the context (just
like in the initialization)
«  Workitem at offset 0x638, saved on the stack, and zeroed from the context

Then the checksum for the full structure is performed.
Once this is done, the workitem is restored in the context from the stack and the checksum result is stored at
0x658. Note that this checksum isn't compared to the previous one, but it doesn't seem to be that critical.

Next PatchGuard proceeds to reencrypt the very beginning of the PatchGuard context, which is the code of
CmpAppendDllSection. There is no obvious reason for this encryption especially since the rest of the structure
remains in clear text for now. Here is what can be seen with REVEN in the middle of the re-encryption
process. In this view, one can see the PatchGuard context structure being re-encrypted step by step, the
selected part being the newly encrypted data and the rest of it the data that is encrypted right after:
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b - Restore Sensitive data

The next part of post detection process is the rewrite of sensitive data, especially used in the mechanism of

calling KeBugCheck. Instead of checking the integrity (which we suppose may already have been
compromised), PatchGuard prefers to rewrite PTE and Windows critical routines. These rewrites will prevent
an attacker from hooking PatchGuard at this moment, as the hook will be re-written with original values.

i - PTE rewrite
Recall that in the initialization function KilnitPatchGuardContext, PTE were saved in the context structure. Here

is a snippet:

L[ooo]

ULONG64 pointer_to PTE_0x1_0xa40; // ffff8140a0502f80
ULONG64 saved_value_for_PTE_1_0xa48; // ©000000001008063
ULONG64 pointer_to PTE_0x2_0xa50; // Tffff8140a05f0078
ULONG64 saved_value_for_PTE_2_ 0xa58; // 0000000001009063
[...]

To restore these PTE, PatchGuard first fetches a SpinLock with KeAquireSpinLockForDpc from the context to
safely manipulate this data, then it iterates over these PTE and rewrites the system's one with these values.

One interesting mechanism here is the use of a "trick™

test cl, cl

btr rax, 7 ;

mov  rcx, cré4

jns oxffffadobd2b7863c ; // (not taken)
mov  rax, rcx

//

PGE Page Global Enabled
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mov cr4, rax
mov cr4, rcx

It uses a "side effect" of the "mov cr4" instruction to flush the TLB. The Intel documentation specifies that
when modifying any of the paging flags, all TLB entries are flushed, including global entries. Here the modified
bit is the 7th, which is the PGE - Page Global Enabled.

ii - Critical Routines rewrite
The next part of the rewrite handles the critical routines to execute the BugCheck. For example, routines such
as KeBugCheckEx, KeBugCheck, or KelsEmptyAffinityEx are rewritten. In the PatchGuard context, the
information is stored as an array of pairs (pFunction, size_of_routine), starting at offset 0x930, and the entire
code of each routine is stored after the PTE entries at offset Oxb80.

Here is a sample of this array from the context structure:

Loac]

ULONG64 ntoskrnl_KeBugCheckEx_0x940; // fFfff803fbad0650 0x197650
ULONG64 size_ntoskrnl_KeBugCheckEx_0x948; // ©000000000000120

ULONG64 ntoskrnl_KeBugCheck2_ 0x950; // Tffff803fbaf8660 0x24f660
ULONG64 size ntoskrnl_KeBugCheck2 0x958; // 0000000000000ded

ULONG64 ntoskrnl_KiBugCheckDebugBreak_0x960; // fffff803fbaf97a0 0x2507a0
ULONG64 size_ntoskrnl_KiBugCheckDebugBreak 0x968; // ©0000000000000b5

[...]

iii - One more anti-debug
With many anti-debug all along the execution, here is probably the last one, and is simply a rewrite of the
DbgPrint routine with 0xC3, which is a « ret » instruction. There is no explanation for this rewrite as DbgPrint
doesn’t seem to be a good target but maybe at some point an attacker can hook DbgPrint to prevent the
BSOD.

iv - Clear some entries
PatchGuard clears two offsets from the context structure, which are 0x610 (KxUnexpectedInterruptO or
KilsrThunkShadow), and 0x690. We don't known the reason of this, since the checksum has already been
computed, but these values are volatiles.

v - KeBugCheckEx or SdpbCheckDII

Almost at the end of the verification routine, PatchGuard will call KeGuardChecklCall with KeBugCheckEx as
argument. But, once again a small change is easily visible with timeless analysis: if the scheduling method used
is 7, then KeGuardChecklICall is rewritten in KilnitPatchGuardContext function, at 0x140895C2B, along with
KeGuardDispatchlCall:

lea rax, KeGuardCheckICall
sub eax, ebx
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test edi, edi
jz short loc_140895C3D
mov byte ptr [rax+r12], 0C3h ; // ret instruction

This mean that if method used is not 7, then SdpbCheckDll is called instead of KeBugCheckEx.

SdpbCheckDll is a stub to KeBugCheckEx but starts by clearing the thread stack, obtained from

ETHREAD.InitialStack, before jumping to KeBugCheck. Note that if the current thread is executing a DPC
(check KPCRB.DpcRoutineActive), then PatchGuard will check if the current stack is the one from the Dpc
(pointed to by KPCRB.DpcStack). In this case, the DpcStack is cleared instead of the ETHREAD.InitialStack.

This can be observed at 0x1402F1139:

mov
mov
mov
mov
test
jz
lea

cmp
ja

lea
lea
cmp
jnb

mov

rax, gs:20h

ri5, gs:188h

rsi, [rax+2E50h]; DpcStack

al, [rax+2E6Ah]; DpcRoutineActive

al, al

short loc_1402F117B

rax, [rbp+2278h+pg_ctx_var_2100];// just a pointer to the first
;// element on the stack

rax, rsi

short loc_1402F117B ; // Above the stack limit?

rax, [rsi-60060h] ; // Stack is supposed to be 0x6000
rcx, [rbp+2278h+pg_ctx_var_2100]

rcx, rax

short loc_1402F117F ; // Below the stack limit?

loc_1402F117B:

rsi, [r15+ETHREAD_.Tcb.InitialStack]

Then PatchGuard simply proceeds to jump to KeBugCheckEx.

© 2019 Tetrane Updated Analysis of PatchGuard on MS Windows 10 RS4 v1.00

49/61




©

TETRANE

V - Disabling PatchGuard

During this analysis we implemented a driver that is able to disable all PatchGuard context that we know of.
The idea behind this disabling driver is that we consider that at any time, PatchGuard is either sleeping from
the initialization method (for example as a DPC in a timer), or waiting in the middle of a verification routine (as
one can say, an already launched check), at one of the multiple sleeps we can find in the middle of check
routines.
Here is a list of contexts we have to disable:

*  Already launched contexts: This include all threads that are waiting in the middle of verification

routines

¢ Method 0: Timer set with a DPC

*  Method 1: Pointer to DPC set in PRCB AcpiReserved field

*  Method 2: Pointer to DPC set in PRCB HalReserved field

*  Method 3: System Thread launched at initialization time

* Method 4: APC injected in a system thread

*  Method 5: Regular DPC hooked by PatchGuard

*  Method from global pointer in mssecflt.sys

*  Method from KiSwinterruptDispatch

*  Breadcrumbs CclnitializeBcbProfiler: Function to check one specific Nt routine, sleeps between each

check
*  Breadcrumbs PspProcessDelete: Piece of code that check the KeServiceDescriptorTable
*  Breadcrumbs KilnitializeUserApc: Piece of code that check the IDT

This section aim to explain which method can be used to disable each context.

A - Limitations

Even though we don’t think that we missed some things related to PatchGuard, we didn’t implemented this
bypass to support multi-core. This is a lot of work and not really related to PatchGuard itself, and our tests
shows that problems comes from APC injection problems.

Also, one huge precondition is the fact that the disabling code only works for one specific kernel version, as
we use a lot of hard coded values and offsets.

B - Disable already launched contexts

To disable already launched context we implemented a code that will loop through system threads and unwind
their call stack. With pointers of return addresses, combined with the known location of each sleeps in the
middle of verification routines, we were able to find each one of them.

Once we found these threads, we used two methods to disable them. The first one is to set their timer to
infinity, and the second one is to inject an APC that will perform an « infinite » sleep with
KeDelayExecutionThread.
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Note that this code disables already launched PatchGuard context but also method 3 and 4 as they are
launched almost right after being initialized, along with the CclnitializeBcbProfiler method.

C - Disable Timers from method 0

Timers queued by method O can easily be found thanks to the deferred context that has a non-canonical
pointer. This way, we were able to find them and set the DueTime to infinity. Going through each timer is
important as method O can queue multiple contexts.

D - Disable hidden DPC pointer from method 1 and 2

Recall that method 1 and 2 set pointers to DPC in the PRCB structure. To disable them, we just have to clear
these entries from the structure. If the checks are already launched then previous disable will take care of
them.

E - Disable the hook from method 5

This method is pretty straightforward to disable as one just have to restore the original DeferredRoutine in the
global DPC.

F - Disable the global pointer from mssecflt.sys

Now that’s where things gets tricky. At first sight one could think that just clearing the pointer to the global
PatchGuard context would work: one of the first checks performed in the verification routine is whether or not
this context is set, and if so, just exit properly. But since the global PatchGuard context is also used by
KiSwinterruptDispatch, we must ensure that it's also working for this other method. And it's not, since it will
dereference the pointer at the beginning of the check routine, so we have to be more tricky.

At this point, there is one thing to realize: the global PatchGuard context isn't checked anymore. These two

methods don’t check the context themselve before using it, the other method did, and we disabled them, so
basically, at this point, modifying the global PatchGuard context structure is open-bar. We just have to look

for something to modify.

For the method from the global pointer of mssecflt, we can see that a check is performed almost at the
beginning: (pseudo code)

if(pg_ctx.already_checked_struct_count > VALUE)
exit_properly()

Since we can freely modify the PatchGuard context structure, we can just set the entry to a « big » number
(Oxffff for example) and it will exit properly.

G - Disable the KiSwinterruptDispatch method

Just like the method from the global pointer in mssecflt.sys, this method uses the global PatchGuard context
structure, that we can freely modify at this point of the disabling process.
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One of the first check that is performed is the following one:

if (ExAllocatePoolwithTag(pg_ctx.sha256_state_size + sizeof(ctx))
exit_properly()

To take this branch we can just set the entry sha256_state_size to a huge value so that
ExAllocatePoolWithTag fails and PatchGuard exits properly. We used Oxffffffffffffffff - sizeof(ctx) - 1

H - Disable Breadcrumbs - KeServiceDescriptorTable check

We showed that this method uses many global variables. Among others the original hash, and all the
information needed to compute it so an attacker can modify the table and compute the new hash so
PatchGuard « protect » the attacker’s hook. Or, to disable it, the attacker can just set the timer to infinity as it
is also stored in a global variable near the hash.

| - Disable Breadcrumbs - IDT check

Just like the KeServiceDescriptorTable check, one can either compute again the hash to make the hook
protected by PatchGuard, or simply disable this check by setting the timer to infinity, as it is also stored in a
global variable near the hash.
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VI - Conclusion

A - Few words

Microsoft PatchGuard is a very interesting piece of software, and we showed that the tricks it uses to hide
itself really increase the amount of efforts an attacker have to deploy to disable it. As such, the more different
initialization methods it uses directly imply more work for an attacker.

That said, PatchGuard isn’t really obfuscated as Warbird or other mechanisms with huge virtual machine are.
This is probably done this way to keep good system performances.

In this case we showed that analyzing Patchguard with Reven does not require setting breakpoints or
bypassing anti-debug technique. Generally speaking, since Reven allows instant time travel in memory, it is
very time saving when trying to analyze a complicated structure such as the PatchGuard context. It was very
helpful to analyze the general workflow of the detection routine. Furthermore, since each and every
instruction is replayed, it is possible to exhaustively analyze all actions performed by any program on the
system.

Now, even though the model is to hide mechanisms and triggering methods, we showed that we were able to
analyze them at the point we were able to disable them. Especially, we instantly found that the new method
(compared to Windows 8.1) came from mssecflt.sys, thanks to timeless analysis. Disabling it was just a few
lines of code after that.

B - Remarks about this work

This paper tend to be exhaustive, but really, there is still plenty of mechanisms | didn’t look into. | don’t think
though that they induce some context | didn’t see. For example, one can have a deeper look at KiVerifyXcpt
and MceDispatch. There is also the method 7 that does « nothing », but maybe we missed something. And so
on. Please feel free to contact me about this (@-YouB_).

Regarding the results, as we stated, our disabling code doesn’t work for multi-core system yet. As this
problem doesn’t look like it’s related to reversing PatchGuard per se, we haven't spend time on it yet.

On one core system, our code successfully disabled PatchGuard every time we tested it (several dozen of
times). This doesn’t mean that we handled every single use case, but at this point we're pretty confident about
it.

About releasing the source code and the analyzed PatchGuard context structure. Right now | didn't contacted
Microsoft. This is in our TODO list for sure but we don’t want to be illegal in any way.

C - References

Here are major information sources related to PatchGuard, that | have used/read:
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1. Satoshi Tanda, « PgResearch », https://github.com/tandasat/PgResarch/ 2014, last accessed
26/02/2019. // (true goldmine)

2. Ermolov, Shishkin, « Microsoft Windows 8.1 Kernel Patch Protection Analysis », 2014, Positive
Technologies

3. Skape, « Bypassing PatchGuard on Windows x64 », Uninformed, 2005

4. Skywing, « PatchGuard Reloaded - A brief (!!) Analysis of PatchGuard Version 3 », Uninformed, 2007

5. zerOmem (Peter Hlavaty), « How to boost PatchGuard: it’s all about gong fu! », www.zerOmem.sk/?
p=271, 2013, last accessed 26/02/2019

6. Andrea Allievi, « The Windows 8.1 Kernel Patch Protection », blog.talosintelligence.com/2014/08/the-
windows-81-kernel-patch-protection.html, 2014, last accessed 26/02/2019

| don't quote people from online help that answered very old questions but they really helped me a lot. Some
special thanks are in the presentation too.

© 2019 Tetrane Updated Analysis of PatchGuard on MS Windows 10 RS4 v1.00 54/61


http://www.zer0mem.sk/?p=271
http://www.zer0mem.sk/?p=271
https://github.com/tandasat/PgResarch/

©

TETRANE

VIl - About Tetrane and REVEN technology
A - TETRANE

TETRANE is a highly specialized software development firm created in 2011 and based in France. TETRANE
develops REVEN Axion, a software reverse engineering analysis and debugging solution.

The timeless analysis concept at the core of REVEN Axion provides in-depth information about real program
behavior to hunt, analyze, and identify software bugs as well as to aid in accurate understanding of highly
sophisticated code bases, including malware and other malicious code. TETRANE also maintains training and
expertise on complex hardware and software architectures. As of December 2018, TETRANE has 14 full-time
employees, including 10 R&D engineers and PhDs.

TETRANE’s mission is to reduce the time it takes to understand and handle software bugs and malware, thus
giving customers a crucial competitive advantage.

Innovation: Innovation is the key to our success.Breakthrough innovation means taking risks, so we continue
to imagine and explore new technological areas. We promote change, and are confident in our ability to shape
the future. The only real failure is the refusal to try.

Professionalism & Excellence: We strive to exceed our customers’ expectations because we want them to
succeed. The work we do is serious, but our passion makes it fun.

We work with teams of experts all around the world to ensure you're getting the quality you deserve.

Trust: We operate in sensitive environments, so we earn the trust of our customers through the quality of our
products; we keep their trust through our loyalty to them.

Team: Our strength as a team comes from the belief that every member matters. We learn from each other,
value individual skills, and are all striving together to deliver high-quality solutions.

To learn more about TETRANE, please visit: https://www.tetrane.com

Contact Information

TETRANE

82-86 rue Victor Hugo
71000 Macon

+33 (0)3 39 25 00 45
+1 (415) 513-7474
contact[AT]tetrane.com

B - TETRANE'’s technology

TETRANE's Timeless Analysis captures a time slice of a full system execution (CPU, Memory, Hardware
Events) to provide unique analysis features that speed up and scale your reverse engineering process.

A simple workflow to unleash your RE Power with Timeless Analysis. Quickly identify the root-cause, assess
the exploitability, and bypass packers or crypto, triage, etc. All of this is done through a GUI or API.
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1 - Example of workflow
a - Identify the scenario you want analyzed

Fuzzing—\-.

Identify the crash, the event, or just the time slice you want to capture. It

can be from a manual execution, triggered in a fuzzing process, or from
a malware sandbox
Interactive

Sandbox -

b - Capture the full system execution

Scenario
Capture the execution within a VM (Vbox or QEMU). The whole process

can be automated or done manually. TETRANE captures the overall
system (CPU, memory, I/0) including kernel execution. You have now
captured all you need and avoided the multiple executions typically
required when using a debugger.

Virtual
Machine

¢ - Generate the trace

The full trace is generated once and for all. It extends the pure execution
by generating additional data to profive features like state of art data
tainting, memory history, instant search, etc.

Execution
Trace
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d - Analyze interactively or automatically

Interactive , . . .
Identify the root cause, assess the exploitability, and write a reliable

exploit. No matter what your reverse engineering goal is, you will love
investigating through our GUI and the scripts we build on top of our API.
Integrated with tools like IDA, WinDbg and Wireshark, you can
seamlessly mix all of their capabilities.

Automated

2 - Unprecedented Speed for Vulnerability Analysis

Immediately locate the crash origin and start investigating with Memory History and Data Tainting, both
backwards and forwards.

@ 1t explains the crash origin

e It explains the bug root cause
e It helps to build a reliable & stealthy Exploit

3 - Automate Triage at Scale

Looking to increase the throughput of your reverse engineering process? Automate the investigation of all
crashes resulting from fuzzing to focus your security researchers on high-value cases.

EXIID-¢ O e
| z | (£
Filtering & Triage ((@

°
-~

Fuzzi

X,

)
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4 - Build your own Reverse Engineering Platform

Whatever your goal is, everyone can benefit from a faster process, a deeper analysis, and a solution that helps
address any cyber security talent shortages. Build your own platform to automate your workflow, pre-process

results, and integrate it with tools like IDA Pro, Wireshark, or WinDbg. Build your own scripts or integration
with the Python API.

REPLAY EXECUTION ’

TRACE

5 - Unique capabilities to assess vulnerabilities

Get to the root cause quickly, assess if a vulnerability is exploitable, bypass complex malware protections, and
get full visibility of the kernel as well as multi-process software.

a - Data tainting

Taint analysis <Beta>
From |2968406 To 0
Tag0 |[ds:0xff88007¢b95800:27)

Tagl y: rax, bl, [0xff88aa999]

The state of art taint analysis automates the task of following

T targeted data from memory buffers and registers. When
Tag0 3 of . . . . . .
- a1 ~ performing a backward taint, you will be able to find the origin of
[phy : 0x77b! 1 18 . . . .
aoize oty 7740027 oy v 7hsene 7 the tainted data. The taint view follows the data flow in the
2085276 [phy : 0x774f3022] [phy : 0x7c0a201a)]
#985274  [phy:0x7743008;19] [phy : 0x7€0a2000; 18]

[phy:0x77473022], [phy:
#984016  xmn1[0:7], xam1[15:15] 0x77413013;8]
| #384015 | xna010:10]

[phy : 0x7743008;11]
[phy :Bx77a63ea2], [phy: X )
#oa2067 POy xnn1[0:7], xanl[15:15]

trace, either forward or backward, system wide, and through
billions of instructions.

b - Memory History
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UKD/ 1RESU UUUAILI AN I0UL WA | 1US3BRIURI 2 s s sk

0x59427fee40 0001500001601 0OGO0CO0B04bOO0L Lk

Transition Type Start address

#761232080 ] 0x504271ede8

761232109 0x594271edeB

#761232350 Q1 Ox59427 ede8
2761232386 Ox594271edes
#761232411 [ Oxs94271ede8

#761232460 Ox50427 edes

2761232587 ﬂ Oxs9427fedeB
= [ ]

7 Show access history of selection

. Instantly view the exhaustive access history of a selected
J memory buffer through billions of instructions.

- 175 Regfs| -

c - String View

CAELRRR &:l;:ilgzm:e_st‘:;\:::cnnstr‘..
#830602 ol cdac

mesStamp::constr...
#830613 P Find and see dynamic strings as easily as you do with static

d _cdecl . . .
#830624 ::ﬁ',gﬁffélmnstr_. strings. This could be the data recieved from the network,

oid __cdecl .
Fea0ess PmGStampHcaner.. decrypted text or encrypted CnC URL from malware. If it’s in
#B830646 illa:: Timest » o . . . . g e
e :'.fﬁhf TimeStBomp SConsi clear text at anytime of execution in memory, you will see it in

Strings Bookmarks

mozilla::T\mestamp::cunstrQ); Seconds.

d - Integrated with RE Tools

20200 X
01 ab210d

tslamp Type Start address

1720l croceercs «
72,0 (s osaace ¢
72,0 (e ooz 4
72,0 (o ol @
11720 P e o 4

1

[CEERY . [RELAnN

sbuffer CPU
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Python APl and seamless integration with IDA, Windbg,
Wireshark, GDB, Volatility, and more.

You can review what was on the screen at any point in time.
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- END -
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